HIGHLIGHTS FROM

J. A. Aguilar on behalf IceCube

ULB iine

Photo: Ian Reese

- Introduction: Cosmic Rays and Neutrinos
- The IceCube Neutrino Telescope
- Results from IceCube: Astrophysical Neutrinos
- Conclusions

THE COSMIC-RAY MYSTERY

- Cosmic Rays discovered by Victor Hess (and others) in 1912
- Cosmic Rays spectrum spans 10 decades of energy. Origin still unknown.
 - Galactic CRs: Supernova remnants?
 - Extra-Galactic CRs: AGNs, GRBs, magnetars?

Neutrino Astronomy is THE window to the extragalactic Universe above 100 TeV

RICAP 2016

Track topology

- Good angular resolution 0.1°
 - 1° → Neutrino Astronomy
- Vertex can outside the detector → Increased effective volume

Cascade topology

- All flavors
- Fully active calorimeter →
 Good energy resolution
 ±15% deposited energy
- Angular reconstruction
 possible → ~10° > 100 TeV

RICAP 2016

Sources may be numerous and faint, hard to resolve individually.

Using up-going through-going muon events using Earth as a shield against atmospheric muons

Using the outer layers as an active veto to select starting events.

hard spectrum

- First evidence (3.7 σ) of an extra v_μ -based astrophysical component already seen with 2 years of data.
- Latest results (5.9σ) with 6 years.

Measured flux:

 $\Phi(E_{\nu}) = 0.82^{+0.30}_{-0.26} \times 10^{-18} \text{GeV}^{-1} \text{cm}^{-2} \text{sr}^{-1} \text{s}^{-1} (\text{E}_{\nu}/100 \text{ TeV})^{(-2.08 \pm 0.13)}$

A multi-PeV event was observed in the through-going muon sample:

deposited energy: 2.6±0.3 PeV (lower limit on neutrino energy)

date: June 11, 2014

direction: 11.48° dec / 110.34° RA

DIFFUSE: STARTING TRACK EVENTS

- Results from 4 years of data.
- Analysis is sensitive to track and cascade topologies.
- Lower energy thershold

Deposited EM-Equivalent Energy in Detector (TeV)

 6.5σ

for 53(+1) events

arXiv:1510.05223 PoS(ICRC2015)1081 2

Assumption: 1:1:1 flavor ratio, 1:1 neutrino:anti-neutrino

The measured flux seems to tend towards a soft spectrum driven by lower energy bins (threshold ~ 60 TeV)

arXiv:1510.05223*

PoS(ICRC2015)1081

▶ Departing from the single unbroken power-law hypothesis E⁻Y?

DIFFUSE: COMPATIBILITY OF RESULTS

	Sources				Earth▶		
	ν_{e}	(ν_{μ})	$ u_{ au} $		$\nu_{\rm e}$	ν_{μ}	$\nu_{ au}$
Pion Decay	1	2	0		1	1	1
Muon damped	0	1	0		0.2	0.39	0.39
Neutron decay	1	0	0		0.56	0.22	0.22

- Only a small region of flavor ratios allowed at Earth after cosmological distances.
- Both muon damped and pion decay models allowed. Neutron decay excluded at 3.7σ

ApJ 809, 98 (2015)/ PoS(ICRC2015)1066

Through-going muons have excellent pointing. Atmospheric neutrino background is small when looking for clusterings in the sky!

POINT-SOURCES: THROUGH-GOING MUONS

- Using 6 years through-going sample, best sample for point-source searches.
- No significant excess found.

arXiv:1510.05222 PoS(ICRC2015)1047

New: Analysis using combined data from ANTARES

See Agustin's talk next

POINT-SOURCES: HIGH ENERGY STARTING EVENTS

- Uses a modified version of the standard through-going analysis.
- Several other searches performed (galactic plane, transients, etc.)
 No significant evidence of clustering was found.

Arrival distribution of events limit a galactic component < 50% [Ahlers et al. arXiv:1505.03156].

Gaggero et al. arXiv:1504.00227

- Further constrains on gamma-ray diffuse emission reduces up to a 25% of the neutrino flux [Gaggero et al. arXiv:1505.00227]
- An extra-galactic component needs to be invoked.

STAR FORMING GALAXIES

hadronic γ-ray emission normalized to best-fit non-blazar EGB v (per flavor) 10^{-6} total y direct y cascade y $E^2 \phi \ [\text{GeV cm}^{-2} \, \text{s}^{-1} \, \text{sr}^{-1}]$ EGB (Fermi) 10^{-7} IceCube combined 10^{-9} 2FHL range. combined fit range 10^{-2} 10^{3} 0.1 10 E [TeV]

BLAZARS

RICAP 2014 Proceedings
Paper in preparation

Bechtol et al. arXiv:1511.00688

- \blacktriangleright Too many neutrinos to be from Star Forming Galaxies (diffuse γ -ray limited by the non-blazar component of the EGB).
- ▶ Blazar population study indicates at most 25% of neutrinos from 2LAC Blazars.
- ▶ Gamma-Ray Bursts? Prompt emission also excluded based on IceCube results.
- So, what's left? Hidden sources?

RICAP 2016

MULTIMESSENGER: REALTIME FRAMEWORK

- LIGO discovered gravitational waves!
- IceCube/
 ANTARES did a
 follow-up of
 LIGO
 GW150914

ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration, Virgo Collaboration [arXiv:1602.05411]

- No neutrino association found (expected from BH mergers)
- A fast-response analysis is being put in place to respond quickly to this kind of astronomical events.

MULTIMESSENGER: ICECUBE HESE EVENTS

GCN/AMON NOTICE TITLE: Wed 27 Apr 16 23:24:24 UT NOTICE DATE: NOTICE TYPE: AMON ICECUBE HESE RUN NUM: 127853 67093193 EVENT NUM: SRC RA: 240.5683d {+16h 02m 16s} (J2000), 240.7644d {+16h 03m 03s} (current), 239.9678d {+15h 59m 52s} (1950) +9.3417d {+09d 20' 30"} (J2000), SRC DEC: +9.2972d {+09d 17' 50"} (current), +9.4798d {+09d 28' 47"} (1950) 35.99 [arcmin radius, stat+sys, 90% containment] SRC ERROR: 0.00 [arcmin radius, stat+sys, 50% containment] SRC ERROR50: 16/04/27 (yy/mm/dd)17505 TJD; 118 DOY; DISCOVERY DATE: 21152 SOD {05:52:32.00} UT DISCOVERY TIME: REVISION: 1 [number of neutrinos] N EVENTS: STREAM: 0.0000 [sec] DELTA T: SIGMA T: 0.0000 [sec] 0.0000e+00 [s^-1 sr^-1] FALSE POS: 0.0000e+00 [dn] **PVALUE:** CHARGE: 18883.62 [pe] SIGNAL TRACKNESS: 0.92 [dn] 35.75d {+02h 23m 00s} +14.21d {+14d 12' 45"} SUN POSTN: Sun angle= 10.3 [hr] (West of SUN DIST: 145.82 [deq] Sun) 282.67d {+18h 50m 41s} -18.11d {-18d 06' 31"} MOON POSTN:

20.70, 41.68 [deg] galactic lon, lat of the

236.19, 29.39 [deg] ecliptic lon, lat of the

- An alert system based on HESE track-like events.
- Expected ~ 4 alert notices per year (1 astrophysical, 3 background)
- One event found few weeks after the system was put in place! (ST ~ 0.9)

event

event

MOON DIST:

GAL COORDS:

ECL COORDS:

COMMENTS: AMON ICECUBE HESE.

49.62 [deg]

MULTIMESSENGER: REACTIONS TO ICECUBE-160427A

- ▶ GCN 19364 Fermi Gamma-Ray Burst Monitor No detection
- ▶ GCN 19360 Fermi LAT 5 unrelated blazars
- ▶ GCN 19361 HAWC no detection
- GCN 19362 MASTER no detection
- ▶ GCN 19377 VERITAS no detection
- ▶ GCN 19392 iPalomar Transient Factory 3 transients, all AGN
- ▶ GCN 19427 FACT Cherenkov TeV Telescope no detection
- ▶ GCN 19426 Interplanetary Network no detection
- ▶ GCN 19381 Pan-STARRS 7 SN candidates, one consistent with type Ic supernova.

PINGU

Further in-fill Lower the energy threshold few GeV Neutrino Mass Hierarchy Dark Matter + Solar Flares

High Energy Array (HEA)

Extension of IceCube array
Look for high-energy events
GZK and astrophysical neutrinos

Surface Veto: Air showerdetector with 75 km² / 100 TeV threshold

White paper:submitted in Dec. 2014 [arxiv.org:1412.5106]

- The future exploration of the high energy universe belongs to Neutrino Astronomy.
- IceCube has started to characterize the observed astrophysical neutrino flux.
- Future discoveries will be only possible with multimessenger campaigns. IceCube is actively interconnected in the realtime network sending and receiving alerts.
- Different components (IceTop-2, HEA, Radio Array,...) will make IceCube-Gen2 a global neutrino observatory.
- Many other analysis results not presented here: Dark Matter,
 Oscillations, Sterile Neutrinos, Cosmic Ray Anisotropy,...