The ARCADE project

L. Valore

University of Naples - INFN Naples

RICAP 2016 – Villa Tuscolana, June 22, 2016
ARCADE
Atmospheric Research for Climate and Astroparticle Detection

➢ Approved by the MIUR in 2011

➢ started in 2012 – ended in 2016

➢ involves people from: University / INFN of Naples and Turin, CETEMPS/DPSF L’Aquilla + Colorado School of Mines, USA
Atmosphere and UV light

- UHE cosmic rays entering the atmosphere determine the production of showers of secondary particles (EAS) and of UV light (fluorescence / Cherenkov light)
- UV light can be detected to infer the properties of the primaries

The atmosphere is responsible for both the production and attenuation of UV light

Properties of the atmosphere need to be well known: the scattering of light due to aerosols is the most significant and variable phenomenon, influencing the correct determination of the longitudinal development of the EAS in air and of its energy. Clouds distort UV light profiles (enhancing or blocking light).
The role of the atmosphere
Atmosphere is responsible for both production and attenuation of UV light

Molecules
Well known on a daily basis
Measurements of \(p, T \) at ground + profiles with height full determine the molecular density profiles.

Aerosols
Poorly known, and highly variable in time and space.
Network of instruments for a continuous monitoring needed

\[
I(\lambda, s) = I_0(\lambda, s) T_{mol}(\lambda, s) T_{aer}(\lambda, s)(1+f) \frac{d\Omega}{4\pi}
\]

\[
T_{aer}(\lambda,s) = \exp(-\int\alpha(\lambda)(s)ds) = \exp(-VAOD(h)/\text{sen}\phi)
\]

Neglecting the presence of aerosols causes an underestimate in energy on average from 8% (at lower energies) to 25% (at higher energies).

- 20% of showers need a >20% energy correction
- 7% of showers need a >30% energy correction
- 3% of showers need a >40% energy correction

Neglecting the presence of aerosols causes a systematic shift in Xmax from -1 g/cm² at lower energies to 8 g/cm² at higher energies.
Atmospheric monitoring in the CR community

• The aerosol attenuation in CRs community is usually inferred through elastic LIDARs and/or side-scattering measurements from laser sources. Cloud layers height is measured with the same instruments.

• these measurements are based on assumptions on atmospheric properties (horizontal homogeneity, LIDAR ratio, …)

\[\text{uncertainty on aerosol VAOD (h)} \sim 30\% \]

• The anelastic Raman LIDAR is the only device performing measurements not based on any assumption, but its operation in the field of view of UV light detectors is limited due to the long acquisition times needed.

ARCADE
Target of the ARCADE project

Perform measurements of the aerosol attenuation profiles of UV light in atmosphere **simultaneously and on the same air mass** using the typical techniques used in cosmic ray and gamma ray observatories:

1. **Side-scattering measurements** using a distant laser facility and a UV light telescope
2. **Back-scattering measurements** using elastic and Raman lidars
Target of the ARCADE project

Perform measurements of the aerosol attenuation profiles of UV light in atmosphere **simultaneously and on the same air mass** using the typical techniques used in cosmic ray and gamma ray observatories aiming to: a better understanding of the **systematics** and limits of **applicability** related to each method and **possible enhancements**

Location: desert – like environment, typical location for cosmic rays / gamma rays experiments: Lamar, Colorado (U.S.A.)
The experimental setup

LIDAR + telescope for the detection of UV light (AMT)

No interference with any ongoing experiment: free data taking!

designed and realized within this project at the Turin INFN mechanical workshop

owned by the Colorado School of Mines, reassembled and improved for this project
Instrumentation

LIDAR (elastic + Raman) and telescope for side-scattering measurements (Atmospheric Monitoring Telescope). The laser source is common.
Instrumentation

LIDAR (elastic + Raman) and telescope for side-scattering measurements (Atmospheric Monitoring Telescope). The laser source is common.
Instrumentation

LIDAR (elastic + Raman) and telescope for side-scattering measurements (Atmospheric Monitoring Telescope). The laser source is common.
Instrumentation

LIDAR (elastic + Raman) and telescope for side-scattering measurements (Atmospheric Monitoring Telescope). The laser source is common.
Instrumentation

LIDAR (elastic + Raman) and telescope for side-scattering measurements (Atmospheric Monitoring Telescope). The laser source is common.
Lidars and side scattering

- **LIDARS**: remote sensing technology that measures aerosol attenuation profiles by firing a laser beam through the atmosphere and analyzing the back-scattered light.
 - Elastic Lidars measure the backscattered light on molecules and aerosols (needs for some assumption)
 - Raman Lidars measure the backscattered light on specific molecules (N2, H2O, ...)

- **Side Scattering Measurements**: a telescope for the detection of UV light is positioned far from a UV laser light source. The laser light is scattered and attenuated exactly as the UV light produced during the development of an EAS → the study of the laser light that reaches the telescope is used to infer the aerosol attenuation properties
Atmospheric Monitoring Telescope
Colorado School of Mines

Put in operation after 2 years of inactivity. Tested and reassembled in the lab in Golden. Improved DAQ and calibration. Back to operation in the field in June 2014.
AMT -> Laser Simulation

AugerOffline software \rightarrow Simulation of laser light emission, transportation and attenuation towards the telescope

Geant4 \rightarrow Telescope simulation
LED Calibration

Each pixel of the telescope respond in a different way to the same amount of light. Relative calibration needed to make it uniform --> FLAT FIELDING CORRECTION.

An uniforme and stable LED source is placed in the center of the 4-petals mirror of the AMT and illuminate uniformly the whole camera.

LED calibrations → before and after each night of data taking.
Nearby Laser Calibration

A roving laser placed at 3km far from the AMT was used to obtain an absolute normalization of the simulation to the real data. The effects of atmosphere on simulation are negligible at this distance.

![REAL PROFILE](image1)

![SIMULATION NORMALIZED PROFILE](image2)
Sum of 250 side scattering laser events compared to different simulated events.

PRELIMINARY
(data still not calibrated)
The ARCADE Lidar

Primary mirror: Ø 250 mm, f/3

Raman filters and PMTs

Light collection

Laser exit
The laser bench

Depolarizer

5 dichroic mirrors for ultra-pure 355nm laser line

Laser probe RjP-445

Zaber motorized mirror mount: remotely computer controlled fine alignment

BS 95/5

10X BE

Quantel Centurion Nd:YAG laser
Geant4 simulation of the Lidar

LIDAR box and optics

Parabolic Mirror

PMT

Secondary flat mirror

Iris

Plano-Convex Lens
The laser bench realized...

...is housed within an astronomical dome...

The lidar is mounted on a steering mechanism...
... and is hosted on top of a 20 ft shipping container
Built for remote operation

Needs only power and internet connection

webcam

light

Remotely controlled dome

weather station
Remote Control

All the devices are remotely controlled:

- Dome Open/Close
- High Voltage of PMTs
- Radiometer
- Laser
- Steering
- Weather Stations
- Beam Mirror Alignment
Lidar system

weather station

webcam

Radiometer

Laser driver

GPSY II

SBC

PC

Motion controller

Digitizer

Internet access

laser bench

PMTs

HV

15
ELASTIC LIDAR
Multi-angle analysis

h2
τ(h2)

h1
τ(h1)

Hp: horizontally homogeneous atmosphere

RAMAN LIDAR
Vertical and inclined shots

backscattered light

355 nm

387 nm

N2

2 equations for two unknowns
An example of the ARCADE lidar data

ELASTIC CHANNEL

N2 RAMAN CHANNEL

Distance r (km)

clouds

cloud transmission
LIDAR -> Raman Analysis

\[P(\lambda_{NR}, R) = \frac{K(\lambda_R)}{R^2} \cdot \beta(\lambda_R, R) \cdot e^{-\int \alpha(\lambda_0, R) + \alpha(\lambda_R, R) \, dR} \]

Aerosol extinction coefficient

\[\alpha_{aer}(R, \lambda_0) = \frac{d}{dR} \ln \frac{N_R(R)}{S(R, \lambda_R)} - \alpha_{mol}(R, \lambda_0) - \alpha_{mol}(R, \lambda_R) \]

Aerosol Optical Depth

\[\tau_{aer}(R) = -\log \left(\frac{S(\lambda_{NR}, R)}{T_{mol}(\lambda_R, R) \cdot T_{mol}(\lambda_0, R) \cdot N_R(R)} \right) + C \]

The constant “C” is determined imposing that \(\tau_{aer}(R) \) is a linear function between the ground level and a certain altitude \(R_1 \).
The constant “C” is determined imposing that $\tau_{aer}(R) = \alpha(R_1) \cdot R_1 + \tau(R_1, R)$ is a linear function between the ground level and a certain altitude R_1.

$LIDAR -> Raman Analysis$
Preliminary aerosol profiles with the ARCADE Raman Lidar

Original Signal resolution 30m

Averaged Signal Resolution:
- 600m - 1km = 200m
- 1km – 3km = 300m
- 3km – 8km = 600m

extrapolation
Preliminary aerosol profiles with the ARCADE Raman Lidar

CLOUDY DAY

Elastic Range Corrected Signal

Raman Range Corrected Signal

VAOD

CLOUD @ 2.8 km
Data taking & problems
1 year – June 2014 to June 2015

remote shifts from Italy, 1 shifter

- 20 minutes vertical (0°) Raman acquisition @ 100Hz, full power (6 mJ)
- 5 minutes @ 100Hz for each of the 5 positions (0°, 30°, 40°, 46°, 51°)
- 10 minutes @ 90° to test the horizontal homogeneity of the atmosphere

- a few problems during data taking ...
 1. Temperatures too low (long periods T<-10°C) – laser heating failing when T < -5°C
 2. hardware failures needed to be fixed
 3. network very unstable on site
 4. weather rapidly changing and extremely dusty ...
July 2015 – umounting the lidar

... very bad weather in June (tornado @ less than 1 mile from the Lidar) broke the electrical panel and the lidar was stuck open under the bad weather for a few hours ...

the ARCADE Lidar is now back in Italy being upgraded to become part of the CTA
Conclusions

The target of ARCADE is the measurement of the aerosol attenuation profiles of UV light in atmosphere using different techniques on the same air mass, at the same time, to understand the limits of applicability and the systematics of each technique.

We took data for one year with the ARCADE Raman Lidar and the AMT in Lamar, Colorado.

Simulations of the Lidar and AMT + calibration campaigns of the AMT have been performed. First aerosol profiles using the Raman Lidar have been measured, while the AMT data analysis is in progress.
BACKUP
An example of the ARCADE lidar data

Fig. 5.7: Top: an example of a Raman signal resulting from the sum of 30000 laser shots. The dashed blue line indicate the altitude from where the analysis is performed. Middle: VAOD profile resulting from the analysis of the Raman signal before the evaluation of the integration constant. Bottom: corrected VAOD profile; continuous red line is a smoothing obtained using a central running average, dashed blue lines are obtained shifting the smoothed profile by the associated uncertainty.

Fig. 5.8: A cloud is present above the lidar: it appears as a bump in the elastic signal (top) and as a depression in the Raman one (middle). The value of the VAOD increases at the altitude corresponding to the cloud base (bottom)
Receiver alignment
The LIDAR signal

LIDAR Signal

\[N_{em}(x) \propto \frac{N_{ph}^{FD}(x)}{T(x)} \]

Transmission

\[T(x) = e^{-\tau(x)} = e^{-\int_0^x \alpha(x')dx'} \]

Optical depth (OD) Extinction Coefficient

LIDAR EQUATION

\[P(r) = P_0 \frac{ct_0}{2} \beta(r) \frac{A}{r^2} e^{-2\tau(r)} \]

Backscattering Coefficient
LIDAR data analysis: VAOD(h)

LIDARs provide a VAOD(h) estimate using the multiangle analysis.

What we want to measure

\[P(r) = P_0 \frac{ct_0}{2} \beta(r) \frac{A}{r^2} e^{-2\tau(r)} \]

\[S(r) = \ln \frac{P(r)r^2}{P(r_n)r_n^2} = \ln \frac{\beta(r)}{\beta(r_n)} - 2\tau(r,r_n) \]

Auxiliary function \(S(r) \) which is the ratio between the Lidar signal at distance \(r \) and \(r_n \).
Multiangle analysis

A. Filipcic et al., Astroparticle Physics 18 (2003)

based on the assumption of a horizontally uniform atmosphere: \(r = h / \cos \theta \)

6.2. Multi-angle reconstruction

For the ideal atmosphere, with true horizontal invariance, the \(\xi \) dependence of the S-function is particularly simple,

\[
S(h, \xi) = \ln[\beta(h)/\beta_0] - 2\xi \tau(h; h_0),
\]

(23)

with the backscatter coefficient \(\ln[\beta/\beta_0] \) as offset, and OD \(\tau \) as the slope of the resulting linear function in \(\xi \). Therefore, the optical properties of the atmosphere can be alternatively obtained from the analysis of the S-function behavior for scanning lidar measurements.
The Elastic Lidar

Elastic scattering on both molecules and aerosols

\[L^{\lambda_0}(s) = L_0^{\lambda_0} O(r) \cdot \]

\[T^{\lambda_0}_{\text{mol}}(s) T^{\lambda_0}_{\text{aer}}(s) T^{\lambda_0}_{\text{abs}}(s) \cdot \]

\[[\sigma^{\lambda_0}_{\text{mol}}(\pi) n^{\text{mol}}(s) + \beta^{\lambda_0}_{\text{aer}}] \, d\Omega/4\pi \cdot \]

\[T^{\lambda_0}_{\text{mol}}(s) T^{\lambda_0}_{\text{aer}}(s) T^{\lambda_0}_{\text{abs}}(s) \]

Emitting laser intensity

Attenuation (ongoing path)

Backscattering volume

Attenuation (backscattered light)

Assumption needed on atmospheric properties: Lidar Ratio = \(\alpha^{\lambda_0}_{\text{aer}} / \beta^{\lambda_0}_{\text{aer}} \)

\[T^{\lambda}_{\text{aer}}(s) = \exp(- \int \alpha^{\lambda}_{\text{aer}}(s)(ds) \)
The Raman Lidar

Raman Scattering: anelastic collision on N$_2$, O$_2$, H$_2$O
producing a frequency shift of the backscattered photons

\[L^{\lambda_i=\lambda_0+\Delta\lambda_i}(s) = L^{\lambda_0} \cdot O(r) \cdot \]
\[T^{\lambda_0}_{\text{mol}}(s) \cdot T^{\lambda_0}_{\text{aer}}(s) \cdot T^{\lambda_0}_{\text{abs}}(s) \cdot \]
\[[\sigma^{\lambda_i}_{\text{Raman}}(\pi) \cdot n_i(s)] \cdot d\Omega/4\pi \cdot \]
\[T^{\lambda_i}_{\text{mol}}(s) \cdot T^{\lambda_i}_{\text{aer}}(s) \cdot T^{\lambda_i}_{\text{abs}}(s) \]

No more \(\beta^{\lambda_0}_{\text{aer}} \rightarrow \) no need to make assumptions on the Lidar Ratio, but \(T^{\lambda}_{\text{aer}} \)
appears at 2 different wavelengths

\[(\alpha^{\lambda_0}_{\text{aer}} / \alpha^{\lambda_i}_{\text{aer}}) = (\lambda_0/\lambda_i)^k : 2 \text{ Raman channels are used to extrapolate } k \]

Uncertainty on aerosol extinction is lower than with the elastic lidar BUT Raman cross section is 3 orders of magnitude lower than elastic \(\rightarrow \) longer acquisition time!