Very-High Energy Steady Spectrum of Crab Nebula and Particle Acceleration

ederico Fraschetti

Departments of Planetary Sciences & Astronomy University of Arizona

> in coll. with M. Pohl Univ. Potsdam

RICAP-2016 6th Roma International Conference on Astroparticle Physics

June 23rd, 2016

Outline

Multi-detector steady-state VHE (GeV and multi-TeV) spectrum of Crab nebula

New accurate theoretical determination of the Inverse-Compton spectrum for the joint Fermi/LAT –VHE data up to 100 TeV

Microscopic parameters of the population of energetic electrons directly connected to observations

MAGIC differential flux

Photon VHE spectrum:

 $\left[\alpha + \beta \cdot \log(E/E_0)\right]$ dNdEdAdt

Log-parabola

Aleksic et al. 2015 (2009-11 data)

Most likely explanation: E>1 GeV photons Inverse Compton up-scattering off the relativistic e⁻ within the nebula (target photons from dust or CMB or synchrotron self-Compton)

What about VHE?

Microscopic assumptions

Monochromatic target photon field up-scattering off energetic electrons Extreme Klein-Nishima limit $\frac{4\varepsilon_0\gamma}{m_ec^2} \gg 1$ ε_0 : energy of photon target

New VHE steady spectrum I

$$\frac{dN}{d\varepsilon dAdt}(\varepsilon) = \left[1 + \left(-s + 1 - 2r\log(\varepsilon/\bar{\varepsilon}_{0})\right) \cdot \left(\ln\frac{4\varepsilon_{0}\varepsilon}{(m_{e}c^{2})^{2}} - \frac{11}{6}\right)\right]\right] \text{Peak width}$$

$$\times \mathcal{A}(\varepsilon_{0}, \bar{\varepsilon}_{0}) \left(\varepsilon/\bar{\varepsilon}_{0}\right)^{-[s+r \cdot \log(\varepsilon/\bar{\varepsilon}_{0})]}$$

$$\log - parabola \qquad \bar{\varepsilon}_{0} = m_{e}c^{2}\gamma_{0}$$

The new VHE steady-state spectrum is a standard log-parabola with a pre-factor governing the width of the IC peak

s=2.42 (2.47±0.01), r = 0.15 (0.24±0.01), $\bar{\varepsilon}_0$ = 982 GeV

Folded with mono-chromatic assumption for the IC characteristic photon energy: $hv_{IC} = m_e c^2 \gamma$

In extreme Klein-Nishima limit, the photon acquires a sizeable fraction of the electron energy. CMB ruled out (Synchrotron self-Compton ->).

New VHE steady spectrum II

Natural joint explanation of LAT + VHE data: IC off far-infrared pool

Microscopic interpretation

One back-step to standard model of Diffusive Shock Acceleration

Standard Model of Diffusive Shock Acceleration

1) Probability of remaining in the acceleration region independent of particle energy γ (only for highest energies) 2) Isotropy in the pitch-angle in the local plasma frame

Time-asymptotic (steady-state) solution to transport equation for 1-dimensional shock

The spectrum is a power-law in momentum depending only on the shock compression ratio (if back-reaction of energetic particles is neglected)

Crab nebula termination shock

In the mildly relativistic TS $(U_1 \sim 0.2c)$ of the Crab nebula, the condition $v >> U_1$ still applies

1) Probability of remaining in the acceleration region decreasing with energy: $P(\gamma) \sim \gamma^{-q}$

30 TeV electrons in B₀=140 μ G have Larmor radius m_ec² γ /eB₀= 0.00034 pc comparable with diffusion length κ/U_1

2) Weakly isotropic in pitch-angle $(U_1 \sim 0.2c \text{ and } \gamma \sim 10^6)$

$$N(\gamma) = N_0 (\gamma/\gamma_0)^{-[s-1+r\log(\gamma/\gamma_0)]}$$

Connection observations to microscopic parameters: $\beta \simeq -r = q/2\log(1 + \Delta p/p)$

$$q = 2rU_1/c$$
 $q = 0.06$

Small energy dependence Qualitative agreement with previous estimates (Lemoine & Pelletier 2003)

Summary & Conclusion

Natural reproduction of the joint Fermi/LAT and VHE spectrum down to ~ 1 GeV, including the broad IC peak at ~ 200 GeV by using a new theoretical derivation of log-parabola spectrum

Microscopic: Probability for TeV electrons of remaining in the acceleration region at mildly relativistic shock weakly decreasing on energy; thus, the distribution in momentum of emitting particles is not a power-law

Determination of the synchrotron self-Compton spectra underway (e⁻ with $\gamma < 10^8$ in a B =140 μ G emit synchrotron up to 25 keV)

Back-up slides

New VHE steady spectrum I

$$\frac{dN}{d\varepsilon dAdt}(\varepsilon) = \left[1 + \left(-s + 1 - 2r\log(\varepsilon/\bar{\varepsilon}_{0})\right) \cdot \left(\ln\frac{4\varepsilon_{0}\varepsilon}{(m_{e}c^{2})^{2}} - \frac{11}{6}\right)\right] \text{ Pre-factor: peak width} \\ \times \mathcal{A}(\varepsilon_{0}, \bar{\varepsilon}_{0})(\varepsilon/\bar{\varepsilon}_{0})^{-[s+r\cdot\log(\varepsilon/\bar{\varepsilon}_{0})]}$$

