Istituto Nazionale di Fisica Nucleare

Research and development of a pioneering system for a large area photon counter: the VSiPMT

Photodetectors: state of the art

PARALLEL GAIN: obtained with the Geigeravalanche generated in the p-n junction

Photodetectors: state of the art

SERIAL GAIN: obtained by multiplying the photoelectrons in the dynodes

CHARACTERISTICS:

- Large sensitive surface (~cm²)
- Critical time performances
- Poor resolution

PARALLEL GAIN: obtained with the Geigeravalanche generated in the p-n junction

CHARACTERISTICS:

- Small sensitive surface (~mm²)
- Excellent time performances
- Excellent resolution

The goal: increase SiPM surface

VacuumSiliconPhotoMultiplierTube: an hybrid solution for a large area photodetector with excellent performances

The goal: increase SiPM surface

An innovative design for a modern hybrid photodetector based on the combination of a Silicon PhotoMultiplier (SiPM) with a hemispherical vacuum glass PMT standard envelope

The classical dynode chain of a PMT is replaced with a special windowless pover-n SiPM, acting as an electron multiplier (e-SiPM).

excellent photon counting

high gain (> 10^6)

low power consumption (nW)

small TTS (<ns)

simplicity, compactness and robustness

Thanks to the digital output of the e-SiPM the resolution of the whole device will be improved with respect to a classical PMT

Felicia Barbato – RICAP 2016 -Frascati

22/06/2016

The classical dynode chain of a PMT is replaced with a special windowless pover-n SiPM, acting as an electron multiplier (e-SiPM).

excellent photon counting

high gain $(>10^6)$

low power consumption (nW)

small TTS (<ns)

simplicity, compactness and robustness

The <u>BIGGEST DIFFERENCE</u> with respect to other hybrids (HPDs)

In a VSiPMT the gain is equal to that of the e-SiPM.

An adequate HV is necessary to confer to the photoelectrons the right energy to enter in the silicon bulk.

A new generation photodetector for astroparticle physics: the VSiPMT, G. Barbarino et al., DOI: 10.1016/j.astropartphys.2015.01.003

The classical dynode chain of a PMT is replaced with a special windowless pover-n SiPM, acting as an electron multiplier (e-SiPM).

excellent photon counting

high gain (> 10^6)

low power consumption (nW)

small TTS (<ns)

simplicity, compactness and robustness

The absence of the voltage divider leads to a much lower power consumption

GREAT DEAL for such experiments operating in hostile environments (underwater, ice, space)

The classical dynode chain of a PMT is replaced with a special windowless pover-n SiPM, acting as an electron multiplier (e-SiPM).

excellent photon counting

high gain (> 10^6)

low power consumption (nW)

small TTS (<ns)

simplicity, compactness and robustness

In the VSiPMT the TTS is simply due to the electron trajectories between the photocathode and the SiPM and so we systematically expect a lower TTS with respect to a classical PMT.

The TTS is smaller for the VSiPMT than for a standard PMT.

The classical dynode chain of a PMT is replaced with a special windowless pover-n SiPM, acting as an electron multiplier (e-SiPM).

excellent photon counting

high gain (>10⁶)

low power consumption (nW)

small TTS (<ns)

simplicity, compactness and robustness

The VSiPMT is more compact and simpler having <u>ONLY 3 OUTPUT CONNECTIONS</u>: HV, SiPM bias voltage and the output signal.

Applications

Applications

Applications

Felicia Barbato – RICAP 2016 -Frascati

Next future Cherenkov photon counters

An overview on the first industrial prototypes

The industrial prototypes

Waveform and spectra

5 mV/div

Work function

VSiPMT (ZJ5025) Operating Point

Efficiency is highly stable over 3200 V. No need for high voltage stabilization.

- LV-based gain EASY <u>STABILIZATION</u>
- Reducing the SiO₂ coating layer it will be possible to reach the plateau region at even lower voltages.

•

Realization of a larger VSiPMT prototype

Optimizing a prototype

The characterization of the prototypes by Hamamatsu revealed that the VSiPMT is feasible and competitive

The prototypes by Hamamatsu are too small and non optimized.

The aim: realization of a larger, optimized and usable prototype.

e-SiPM	MPPC Hamamatsu S10943-3360 (X) n.1		
V _{bias}	67.15V		
Gain	1.25 x 10 ⁶		
Dark Count Rate	1091 kcps		
Size	3x3 mm²		
Pixel Size	50 µm		
Number of pixels	3600		
Junction	p over n		
SiPM type	windowless		

The selected e-SiPM

e-SiPM characteristics

Signal characteristics

Photocathode

Selected Sample n.1537 (C 2.5nm + Ni 0.5nm) + Csl (20nm)

Felicia Barbato — RICAP 2016 -Frascati

22/06/2016

VSiPMT preliminary test bench

MAIN GOALS: check the operation of the device and optimize the focusing

Vacuum

Felicia Barbato – RICAP 2016 -Frascati

Photocathode frame

Focusing Ring

Photocathode

SiPM Fra

Movable support

Preliminary results

First check: turning ON the high voltage

Preliminary results

Spectral response Spectral response (%) 60 70 70 70 70 70 70 * $HV = -8.5 \, kV$ e-SiPM position = 16 mm * ж ∗ 0.15 * 0.1 * ж *

Felicia Barbato - RICAP 2016 -Frascati

ж

Technological impact

	РМТ	SiPM	HPD	VSiPMT
Gain	10 ⁶ -10 ⁷	10 ⁵ -10 ⁶	10 ⁴ -10 ⁵	≥10 ⁶
Bias	HIGH	LOW	VERY HIGH	HIGH
Temperature Sensitivity	LOW	HIGH	HIGH	HIGH
Mechanical Robustness	LOW	HIGH	LOW	MEDIUM
Magnetic field sensitivity	YES	NO	YES (lower than PMT)	YES (lower than PMT)
Available Area	BIG	SMALL	MEDIUM	MEDIUM
Resolution	POOR	VERY HIGH	HIGH	VERY HIGH
Noise	LOW	HIGH	MEDIUM	HIGH
Rise time	FAST	FAST	MEDIUM	FAST

Conclusions

The first proof of concept of the device dates back to late 2012. It was made testing a special SiPM with an electron beam at the Physics Department of the University of Naples.

One year later the first industrial prototype has been realized by Hamamatsu Photonics and tested by our group.

Today the VSiPMT i project is financially supported by the Italian Space Agency. Within this panorama a 1-inch prototype acting in the VUV region has been realized by our group.

A 1-inch prototype manufactured by Hamamatsu Photonics is currently under test.

We are confident that the VSiPMT will be a reality for the next future experiments!

Thank you!

A new configuration

Photocathode QE

The reflection mode VSiPMT

A new configuration for an higher QE in the VUV

