Sneutrino dark matter

G. Bélanger

LAPTH Annecy-le-Vieux

RICAP, Roma, 22-24/06/2016
Introduction

Strong evidence for dark matter from astrophysical and cosmological observations

Motivation for new particles beyond standard model

Implication of precise determination of amount of CDM on DM particle properties

\[\Omega_{\text{cdm}} h^2 = 0.1196 \pm 0.0031 \]
A wide variety of DM candidates

WIMPs
FIMPs
SIMPs
Asymmetric

L. Roszkowski
• Supersymmetry one of best motivated extension of SM
• No sign at LHC → does that mean that most popular WIMP model (neutralino) is ruled out?
• Strong constraints from LHC + direct detection especially if below TeV scale
• Properties of neutralino DM: strong dependence on its nature: partner of gauge boson (B, W) or Higgs
 • SU(2) number: efficient annihilation into WW→ relic density prefers TeV scale (higgsino) or 2 TeV (wino)
 • U(1) only: bino need light sfermions – LHC disfavoured
 • Mixed: satisfies relic density for any scale – mixed bino-higgsino strongly constrained from direct detection (bino-wino allowed)
Still large area of parameter space to be explored by LHC and (in)direct searches

What about other supersymmetry candidates?
Sneutrino DM

- Another neutral particle in SUSY: the sneutrino
- Partner of LH neutrino NOT a good DM candidate
 - Very large contribution to direct detection - through Z exchange (Falk, Olive, Srednicki, PLB354 (1995) 99) + efficient annihilation
- Neutrino have masses – RH neutrino + supersymmetric partner well-motivated – if LSP then can be dark matter
- Thermalized?
 - New interactions – Gauge: MSSM+U(1) (GB et al JCAP 1112:014) or scalar eg NMSSM (Cerdeno, Seto, JCAP0908:032)
 - Both cases are viable with respect to LHC constraints and feature new signatures – leptons (same-sign, monoleptons) (Arina, Cabrera, 1311.6549, Arina et al, 1503.02960, GB et al, 1505.06243)
Sneutrino DM

- Or not thermalized –
 - abundance from decay of other particles ‘next to lightest dark’ particle which has long lifetime,
 - NLSP freeze-out as usual then decays to feebly interacting sneutrino
MSSM+RH neutrino

- The framework: MSSM + three generations ($\nu_R + \text{sneutrino}_R$).
- Assume pure Dirac neutrino masses.
- Superpotential
 \[W = y_\nu \hat{H}_u \cdot \hat{L} \hat{\nu}_R^c - y_e \hat{H}_d \cdot \hat{L} \hat{\nu}_R^c + \mu_H \hat{H}_d \cdot \hat{H}_u \]
- Couplings of sneutrino proportional to neutrino mass.
- Lower bound on neutrino mass from fits to solar, atmospheric, accelerator neutrino data
 \[|\Delta m^2| = 2.43 \pm 0.06 \times 10^{-3} \text{eV}^2 \rightarrow m^H_\nu > 0.049 \text{eV} \]
- For hierarchical neutrino masses
 \[(y^H_\nu \sin \beta)_{\text{min}} \simeq 2.8 \times 10^{-13} \]
- Upper limit on Yukawa couplings from cosmological bound – Planck temperature and polarisation data, lensing, supernovae, BAO
 \[\sum_{i=1}^{3} m_i < 0.23 \text{ eV at 95\% CL} \]
 \[(y^H_\nu \sin \beta)_{\text{max}} \simeq 4.4 \times 10^{-13} \]
 (for quasi-degenerate neutrinos)
MSSM+RH neutrino

- Sneutrino mass same order as other sfermions – can be LSP

\[-\mathcal{L}_{\text{soft}} \supset M_{\tilde{\nu}_R}^2 |\tilde{\nu}_R|^2 + (y_{\nu} A_{\nu} H_u \tilde{L} \tilde{\nu}_R^c + h.c.) \]

- Sneutrino mixing is very small – can be neglected

\[\tan 2\tilde{\Theta} = \frac{2y_{\nu} v \sin \beta |\cot \beta \mu - A_{\nu}|}{m_{\tilde{\nu}_L}^2 - m_{\tilde{\nu}_R}^2} \]

- Assume mass of RH sneutrino is free parameter (even in sneu-CMSSM)

- Note that natural for sneutrinoR to be lightest particle as its mass does not evolve much with energy contrary to other sfermions.
• Sneutrino not thermalized in early universe – its interactions are too weak
• One possibility for DM is production through decays of sparticles
• Consider the case where stau is the NLSP (here assume CMSSM relations, for general MSSM Heisig et al 1310.2825) – neutralino NLSP no distinctive LHC signature
• Lifetime of stau (2 or 3-body decay) depends on mixing in sneutrino/stau sectors =- from a few seconds to 10^{11}s.

$$
\Gamma_{\tilde{\tau}_1 \rightarrow \nu_R W} = \frac{g^2 \bar{\Theta}^2}{32 \pi} |U_{L1}|^2 \frac{m_{\tilde{\tau}_1}^3}{m_W^2} \left[1 - \frac{2(m_{\tilde{\nu}_R}^2 + m_W^2)}{m_{\tilde{\tau}_1}^2} + \frac{(m_{\tilde{\nu}_R}^2 - m_W^2)^2}{m_{\tilde{\tau}_1}^2} \right]^{3/2}
$$

• Decay of NLSP (MSSM-LSP) after freeze-out
• Relic density obtained from that of the NLSP – can be charged

$$
\Omega_{\tilde{\nu}_R}^{FO} = \frac{m_{\tilde{\nu}_R}}{m_{\text{MSSM-LSP}}} \Omega_{\text{MSSM-LSP}}
$$
Model parameters and constraints

- CMSSM + RH neutrino
- Scan range
 \[m_0 < 2500 \text{ GeV} ; \quad m_{1/2} < 2500 \text{ GeV} ; \quad |A_0| < 3000 \text{ GeV} \]
 - and at electroweak scale\[0 < m_{\tilde{\nu}_R} < m_{\tilde{\tau}_1} ; \quad 5 < \tan \beta < 40 \]
- \(M_{\text{gluino}} > 1.8 \text{ TeV} \)
- Collider constraints – Higgs mass and couplings;
- Flavour constraints \(b-s\gamma, B_s-\mu\mu, B-\tau\nu \);
- Susy searches (mostly not valid because stau is collider stable and charged);
- Charged stable stau \(m>340 \text{ GeV} \) (from CMS Run 1 search)
- Constraints from BBN: lifetime of stau can be long enough for decay around or after BBN → impact on abundance of light elements
Big Bang Nucleosynthesis

- BBN (T~MeV-10keV, t~0.1-10^4s) allow to predict abundances of light elements \(D, He^3, He^4, ^7Li\).
- Depends on photon to baryon ratio
- In early Universe, energy density dominated by radiation
- At high T, weak interaction rates were in thermal equilibrium and n/p~1
 \[n + e^+ \rightarrow p + \nu \]
 \[n + \nu \rightarrow p + e^-\]
- At lower T: weak interactions fall out of equilibrium
- Freeze-out when interaction rate \(\Gamma_{\text{weak}} < H\), species decouple
- When T approaches freeze-out (around 0.8MeV)
 \[n/p \approx \exp^{-\Delta m/T} \approx 1/6\]
• Nucleosynthesis begins with formation of Deuterium
• Number of photons >> number of nucleons the reverse process occurs much faster, deuterium production is delayed, starts only at $T \approx 0.1$ MeV
\[p + n \rightarrow D + \gamma \]
• … and the chain continues with production of heavier elements
• Relationship between expansion rate of Universe (relate to total matter density) and density of p and n (baryonic matter density) determine abundance of light elements
\[Y \approx \frac{2n/p}{1 + n/p} \approx 0.25 \]
• Main product of BBN 4He
• Other elements produced in lesser amounts D, 3He, 7Li
• If particle with lifetime > 0.1s decays can cause non-thermal nuclear reaction during or after BBN – spoiling predictions – in particular if new particle has hadronic decay modes
 • Kawasaki, Kohri, Moroi, PRD71, 083502 (2005)
• Alteration of n/p ratio - for example $\pi^- + p \rightarrow \pi^0 + n$
 • -> overproduction He4
• Hadrodissociation of He4 causes overproduction of D
 • n+He4 \rightarrow He3+D, 2D+n, D+p+n
• Key elements:
 • Bhad: hadronic BR of stau (nuR+W)
 • Evis: net energy carried away by hadrons
 • Ystau: yield
• After all constraints – room for sneutrino DM (even in CMSSM)
• Can constitute dominant dark matter component
LHC signatures

• Characteristic signature: stable charged particle NOT MET
• Staus live from sec to min: decay outside detector
• Searches
 • Cascades: coloured sparticles decay into jets + SUSY \rightarrow N jets + stau
 • Pair production of two stable staus
 • Passive search for stable particles
• Stable stau behaves like « slow » muons $\beta = p/E < 1$
 • Use ionisation properties and time of flight measurement to distinguish from muon
 • kinematic distribution

Banerjee, GB, Mukhopadyhay, Serpico, 1603.08834
Charged tracks from cascades

- Dominant contribution from squark pairs (heavy gluinos)
- Signal computed with Spheno+ Madgraph5aMC@NLO + Pythia+Delphes3+prospino k-factors
- Background: tt,µµ+jets, WW,WZ strongly suppressed with cuts
- Use approach suggested in Gupta et al PRD75075007 (2007)

Banerjee, GB, Mukhopadyhyay, Serpico, 1603.08834
Charged tracks from cascades (2)

- Luminosity required for 5sigma
- Fairly easy to discover if mass stau < 400 GeV
- Luminosity 1ab\(^{-1}\) can probe mass \(~580\text{GeV}\)
- Dependence on mass of squarks

<table>
<thead>
<tr>
<th>Benchmark point</th>
<th>(\mathcal{L}) for 5(\sigma) [fb(^{-1})]</th>
<th>(N_S)</th>
<th>(N_B)</th>
<th>(N_S/N_B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>357 GeV</td>
<td>9.1</td>
<td>25</td>
<td>0.35</td>
<td>72</td>
</tr>
<tr>
<td>400 GeV</td>
<td>2.5</td>
<td>25</td>
<td>0.09</td>
<td>265</td>
</tr>
<tr>
<td>442 GeV</td>
<td>68.5</td>
<td>27</td>
<td>2.7</td>
<td>10</td>
</tr>
<tr>
<td>600 GeV</td>
<td>1100</td>
<td>48</td>
<td>43</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Pair production

- No model dependence – only mass of stau
- Smaller cross section (EW only)
- Background: muon pairs
- Best cuts – close to current ATLAS analysis - JHEP1501 (2015) 068
- Lower reach than previous channel

<table>
<thead>
<tr>
<th>Cut</th>
<th>Benchmark</th>
<th>N_S</th>
<th>N_B</th>
<th>N_S/N_B</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R(\mu\mu) > 0.4$</td>
<td>357 GeV</td>
<td>1543</td>
<td></td>
<td>0.44</td>
<td>21.8</td>
</tr>
<tr>
<td>$\beta < 0.95$</td>
<td>400 GeV</td>
<td>1014</td>
<td>3481</td>
<td>0.29</td>
<td>15.1</td>
</tr>
<tr>
<td>$p_T^{\mu_1,2} > 70\text{GeV}$</td>
<td>442 GeV</td>
<td>715</td>
<td>0.21</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>y(\mu_{1,2})</td>
<td>< 2.5$</td>
<td>600 GeV</td>
<td>211</td>
<td>0.06</td>
</tr>
</tbody>
</table>

$\mathcal{L} = 3000 \text{ fb}^{-1}$

Banerjee, GB, Mukhopadyhyay, Serpico, 1603.08834
Pair production

- No model dependence – only mass of stau
- Smaller cross section (EW only)
- Background: muon pairs
- Best cuts – close to current ATLAS analysis
- Lower reach than previous channel

<table>
<thead>
<tr>
<th>Cut</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta R(\mu\mu) > 0.4$</td>
<td>357 GeV</td>
</tr>
<tr>
<td>$\beta < 0.95$</td>
<td>400 GeV</td>
</tr>
<tr>
<td>$p_T^{\mu_{1,2}} > 70$ GeV</td>
<td>442 GeV</td>
</tr>
<tr>
<td>$</td>
<td>y(\mu_{1,2})</td>
</tr>
</tbody>
</table>

Banerjee, GB, Mukhopadyhyay, Serpico, 1603.08834
MoEDAL detector

- Passive detector
- Array of nuclear track detector stacks
- Surrounds intersection region point 8
- Sensitive to highly ionising particles
- Does not require trigger, one detected event is enough
- Major condition: ionizing particle has velocity $\beta < 0.2$

<table>
<thead>
<tr>
<th>Benchmark point</th>
<th>Cascade</th>
<th>Pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>357 GeV</td>
<td>45</td>
<td>2.5</td>
</tr>
<tr>
<td>400 GeV</td>
<td>296</td>
<td>1.5</td>
</tr>
<tr>
<td>442 GeV</td>
<td>24</td>
<td>1.1</td>
</tr>
<tr>
<td>600 GeV</td>
<td>6</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Number of $\tilde{\tau}_1$'s with $\beta \leq 0.2$ with $\mathcal{L} = 3000$ fb$^{-1}$
CONCLUSION

Sneutrino viable very weakly interacting DM candidate in supersymmetry

LHC has unique potential to probe a whole class of DM models that predict heavy stable charged particles

BBN constraints are important

Class of model with few signatures in astroparticle searches
Charged tracks from cascades (2)

- $p_T^{\mu_1,2} > 200 \text{ GeV, } |y(\mu_1,2)| < 2.4,$
- $p_T^{j_1,2} > 200 \text{ GeV, } |\eta(j_1,2)| < 5.0,$
- $\sum |p_T^{\text{vis.}}| > 1000 \text{ GeV},$
- $\Delta R(\mu_1,\mu_2) > 0.2,$
- $\Delta R(j,j) > 0.4,$
- $\Delta R(\mu,j) > 0.4,$
- $M_{\mu_1,\mu_2} > 1000 \text{ GeV},$