Fermi bubbles

Dmitry Malyshev
Erlangen Center for Astroparticle Physics

Anna Franckowiak,
Vahe’ Petrosian

on behalf of the Fermi LAT collaboration

RICAP, Rome
June 22, 2016
Su, Slatyer, Finkbeiner, May 2010

- E^{-2} spectrum up to 100 GeV
- have narrow edges
- stretch up to 55° above and below the Galactic center
Fermi bubbles – an elephant in gamma-ray sky

• Fermi bubbles’ solid angle is about 1 sr
 – This is comparable to an elephant at 3 m
Fermi-LAT

- Fermi Large Area Telescope – gamma ray space telescope
- Launched on June 11, 2008
 - 20 MeV to more than 1 TeV
 - 2.4 sr field of view
 - Better than 1° resolution above 1 GeV
 - Covers the sky in two orbits (3 hours)
Haze

- Microwave haze

- Gamma-ray haze

Fermi bubbles origin

- Emission mechanisms
 - Leptonic (inverse Compton)
 - Hadronic

- Origin
 - AGN-like activity (~ leptonic)
 - Star formation or star-burst (~ hadronic)
Leptonic Model

- Electrons accelerated in the jet
- Gamma rays by inverse Compton scattering on radiation fields
- Microwave haze by synchrotron of same population of electrons

- Illustrations by P. Mertsch

- Disruption of stars or molecular clouds by central black hole
- AGN-like jet transports particles to high latitudes
- Jets interact with interstellar medium to form bubbles

Hadronic Model

- Cosmic rays accelerated by Supernovae shells
- Gamma rays by π^0 on thermal gas (density ~ 0.01 cm$^{-3}$)
- Secondary e^+e^- produce synchrotron radiation

Aharonian & Crocker, PRL, 106 (2011)

Illustrations by P. Mertsch
Gamma-ray spectrum

Leptonic model

- ICS, $b = 30.5$ deg ($z = 5$ kpc)
- ICS on CMB
- Fermi bubbles

Hadronic model + secondary IC

- $N_p \propto p^{-2.0} e^{-p/4.2 \text{TeV}}$
- $N_p \propto p^{-2.1}$
- Fermi bubbles

- Both leptonic and hadronic models fit the spectrum

Dmitry Malyshev, Fermi bubbles
Microwave haze

Leptonic

Hadronic (secondary leptons)

|l| < 25° and -35° < b < -10°

Planck Collaboration
A&A 554 (2013)

- Synchrotron emission from secondary leptons in hadronic models cannot explain the microwave haze
• At latitudes $|b| > 10^\circ$, the spectrum is uniform

\[E^2 \frac{dN}{dE} \text{ (GeV)} \]

\[10^{-3} \quad 10^{-2} \quad 10^{-1} \quad 10^0 \quad 10^1 \quad 10^2 \quad 10^3 \]

\[10^{-7} \quad 10^{-6} \quad 10^{-5} \quad 10^{-4} \quad 10^{-3} \]

• Natural in hadronic models
• In leptonic models the velocity should be $> 10000 \text{ km/s}$ to avoid e^+e^- cooling before they reach $z \sim 10 \text{ kpc}$ distance
 – stochastic reacceleration: Mertsch & Sarkar PRL 107 (2011)
• Narrow boundary
 – Natural in AGN models – result of expansion
 – In star-formation models, one needs a mechanism that keeps CR from escaping, e.g., magnetic draping

• Absence of a shock
 – Natural in star-formation / hadronic models
 – In leptonic models one needs to (re)accelerate electrons
More puzzles

- **X-rays**
 - **ROSAT**
 - Su, Slatyer, Finkbeiner

- **Suzaku**
 - **Pointings**
 - **Emission measure**

- **Polarization**
 - **S-PASS, 2.3 GHz**
 - **WMAP, 23 GHz** polarization
 - **Planck, 30 GHz** polarization
 - Adam et al (Planck), arXiv:1502.01582

<table>
<thead>
<tr>
<th>Feature</th>
<th>Leptonic</th>
<th>Hadronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy spectrum</td>
<td>✔</td>
<td>with secondary IC</td>
</tr>
<tr>
<td>WMAP / Planck haze</td>
<td>✔</td>
<td>extra component</td>
</tr>
<tr>
<td>Isotropic emission</td>
<td>reacceleration</td>
<td>✔</td>
</tr>
<tr>
<td>Narrow boundary</td>
<td>✔</td>
<td>magnetic draping</td>
</tr>
<tr>
<td>No visible shock</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
AGN or starburst

- Often happen together
- Evidence for an AGN-like activity 0.5 – 5 Myr ago
 - Magellanic stream ionization
 - Young (~ 6 Myr) stellar population near the GC (~ $10^4 \, M_{\odot}$)

OB supergiants
 (~ few Myr lifetime)

Galactic center and the Fermi bubbles

- Fermi bubbles spectrum for $|b| < 10^\circ$

- Is it a part of the Fermi bubbles or a separate component?
- Options
 - Only bubbles
 - No bubbles
 - Both the bubbles and a new component

Dmitry Malyshev, Fermi bubbles
Fermi bubbles at low latitudes

• Assume that the bubbles have the same spectrum near the GC as at high latitudes $\sim E^{-2}$ between 1 and 10 GeV

• Subtract π^0 component and PS from data and represent the residual using two components:
 – Bubble-like $\sim E^{-2}$
 – Other components (IC, ISO, Loop I etc.) $\sim E^{-2.4}$

Data – gas – PS $\sim E^{-2}$ component Bubbles template

• Fermi bubbles template near the GC:
 – Larger intensity
 – Displaced to the right from the GC
Fermi bubbles near the GC

- Center of the Fermi bubbles intersection with the Galactic plane:
 \[\sim 1^\circ - 2^\circ \text{ or about } 100 - 300 \text{ pc to the right of the GC?} \]

Fermi LAT Pass 7 diffuse model

Fermi LAT analysis of the GC excess?

Calore et al GC excess analysis?

Displacement of the GC excess:

Fermi bubbles

Galactic longitude (deg)

Galactic latitude (deg)

Residual 1.6 – 10 GeV

Acero et al (Fermi LAT)
ApJS 223 (2016)

Ajello et al (Fermi LAT)

Calore et al,
JCAP 1503 (2015)
Future

- **eROSITA**
 - Search for cavity in hot gas plasma due to CR pressure inside the Fermi bubbles

- **HESS, MAGIC, VERITAS, CTA, HAWC**
 - Fermi bubbles near the GC seem to be brighter
 - Possible to see with Cherenkov telescopes?

- **IceCube, KM3net**
 - Search for neutrinos from the Fermi bubbles

- **More analysis of existing data**
 - Fermi LAT (Pass 8 data)
 - Planck polarization
Conclusions

• Fermi bubbles are a unique feature on gamma-ray sky
 – Relatively bright in gamma rays
 – No clear counterpart at high latitudes in X-rays or radio
• Possible origin and emission mechanisms
 – AGN-like activity of Sgr A* (IC gamma rays)
 – Enhanced star formation near the GC (π⁰ gamma rays)
 • Both scenarios have advantages and disadvantages
• Tentative characterization at low latitudes:
 – Enhanced intensity near the Galactic plane
 – Displaced to the right (negative longitudes) from the GC
• Origin of the Fermi bubbles is an exciting question
 – Should learn more soon using new data from
 • eROSITA, CTA, IceCube and KM3net