Talk overview

Introduction:
- Extensive Air Shower Arrays

HAWC detector:
- Design, construction, performance

First Results:
- Galactic Plane survey (new sources)
- Geminga detection
- Flaring blazars observations
- IceCube Event
- CR Anisotropy
Gamma-Ray Observatories

Wide FOV continuous operation

Satellites

AGILE
EGRET
Fermi-LAT

Space-based

TeV sensitivity

EAS

Milagro
Tibet AS$_\gamma$
ARGO-YBJ
HAWC

Ground-based

H.E.S.S.
MAGIC
VERITAS
CTA
EAS Detectors

- Main features:
 - Large active area >10^4 m^2.
 - High duty cycle >90%.
 - Large FOV (~2sr).

WHAT CAN WE DO WITH EAS?
- Highest energy gamma-rays (>10 TeV)
- Continuous observation: Transient phenomena and flaring sources (e.g. GRBs, AGNs).
 - Long duration light curves and multi-wavelength follow-up.
- Large gamma-ray structures: extended sources, Galactic Plane emission, Fermi bubbles, surveys
- Cosmic ray physics.
HAWC Collaboration

USA:
Pennsylvania State University
University of Maryland
Los Alamos National Laboratory
University of Wisconsin
University of Utah
Univ. of California, Irvine
University of New Hampshire
University of New Mexico
Michigan Technological University
NASA/Goddard Space Flight Center
Georgia Institute of Technology
Colorado State University
Michigan State University
University of Rochester
University of California Santa Cruz

Mexico:
Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)
Universidad Nacional Autónoma de México (UNAM)
Instituto de Física
Instituto de Astronomía
Instituto de Geofísica
Instituto de Ciencias Nucleares
Universidad Politécnica de Pachuca
Benemérita Universidad Autónoma de Puebla
Universidad Autónoma de Chiapas
Universidad Autónoma del Estado de Hidalgo
Universidad de Guadalajara
Universidad Michoacana de San Nicolás de Hidalgo
Centro de Investigación y de Estudios Avanzados
Instituto Politécnico Nacional
Centro de Investigación en Computación - IPN

Poland:
Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego - Polskiej Akademii Nauk

Germany:
Max-Planck-Institut für Kernphysik
HAWC Milestones

- Feb, 2011: Beginning of the construction.
- Summer 2011: VAMOS engineering array (7 tanks).
- October 2012: 30 tanks, first results.
- August 2013: beginning of science operations.
- March, 2015: Detector inauguration.
- April, 2016: First year catalog.
High Altitude Water Cherenkov Detector

- 4100 meter site in Mexico
- 22,000 m² detector area.
- 300 4.5m high, 7.3m diameter Water Cherenkov Detectors
- 100 GeV - 100 TeV Sensitivity
- Average Angular Resolution (68% Cont.) 0.5°.
- Strengths:
 - Wide field-of-view
 - Extreme high-energy reach

- Main Background: Hadronic cosmic rays
- Crab Nebula: 400 photons/day
- Background: 15000 cosmic rays/second
Mapping the Northern Sky in High-Energy Gamma Rays

HAWC Observatory

HAWC operates day and night, providing a large field of view for the observation of the highest energy gamma rays.

HAWC is located at 4,100 m above sea level, covering an area of 20,000 m².

Water Cherenkov tank

HAWC comprises an array of 300 tanks that record the particles created in gamma-ray and cosmic-ray showers.

Particles inside the shower produce Cherenkov radiation that is detected by the PMTs.

Gamma rays vs cosmic rays

HAWC selects gamma rays from among a much more abundant background of cosmic rays.

- gamma-ray shower: "hot" spots concentrate around the core
- cosmic-ray shower: "hot" spots are more dispersed
Gamma/Hadron Separation

- Main background is hadronic CR, e.g. 400 γ/day from the Crab vs 15k CR/s.
- In gamma-ray showers, most of the signal at ground level is located near the shower axis.
- In charged cosmic rays tend to "break apart", much messier signals at ground level.

HAWC Data – Hadron Shower

HAWC Data – Likely Gamma Ray
We compute the distribution PINCness for a region around the Crab.
Scale the "background" region to the same solid angle as the bin around the Crab.
Only events with >75% of PMTs hit were used.
HAWC Sensitivity

- Instantaneous sensitivity 15-20x less than IACTs.
- Exposure (sr/yr) is 2000-4000x higher than IACTs. Survey > half sky to 40 mCrab [5σ] (1yr) and < 20mCrab [5σ] (5yr)
Crab Nebula: Performance Benchmark

Seeing the Right Number of Gamma Rays…
The Crab Nebula

- Crab Nebula detected with high significance \(\sim 85\sigma \) in 1 yr.

- Gamma-like event of \(\sim 60\text{TeV} \) within 0.25 deg from the Crab position.

- It was used to test our angular resolution and g/h cuts.
HAWC SkyMap 340 Days

HAWC 0.1—100 TeV

PRELIMINARY

sqrt(TS)

24-May-2016
Sabrina Casanova
HAWC is about 15 more sensitive with lower energy threshold and more sensitive towards Galactic centre (HAWC is located more south with respect to Milagro).
HAWC SkyMap 340 Days

Mrk 501 - 21σ

Mrk 421 - 31σ

Geminga* - 10σ

Crab Nebula - 84σ

Galactic Plane
HAWC View of the Galactic Plane

~40 sources seen in first year
25% are new!

New: Association unclear

SNR with very energetic pulsar

New: Pulsar ~8kpc (26,000 ly) away

Paper in preparation!
New TeV emission region
2HWC J1927+187*
• ~7σ pre-trials
• current blind search algorithm identify this region associated with 2HWC J1930+188, ongoing analysis on spatial morphology

2HWC J1930+188
• coincident with VER J1930+188 (SNR G54.1+00.3 / PSR J1930+1852)
• TeV emission was reported to be point-like and likely from PWN
• nearby molecular CO cloud

New TeV source
2HWC J1928+178
• ~8σ pre-trials
• coincident with PSR J1928+1746
• tail towards unidentified source 3FGL J1925.4+1727
• VERITAS point source upper limit ~1.4% of Crab
Cygnus Region

2HWC J2019+368 is coincident with MGRO J2019+37 and VER J2019+368
- extended emission including PSR J2021+3651 and HII region Sh 2-104

New TeV source 2HWCJ2006+340:
- >6σ pre-trials
- 0.6° from unidentified source 3FGL J2004.4+3338

0.6-1TeV
>1TeV

MGRO J2031+41 is resolved into two distinct TeV sources:

- 2HWC J2031+415 — TeV J2032+4130, a PWN
- 2HWC J2020+403 — VER J2019+407, UID encompassing SNR G78.2+2.1 and PSR J2021+4026
- extended emission region 2HWC J2025+410* and 2HWC J2027+403* at Fermi cocoon / ARGO superbubble region
two distinct TeV sources:

- 2HWC J2031+415 — TeV J2032+4130, a PWN
- 2HWC J2020+403 — VER J2019+407, UID encompassing SNR G78.2+2.1 and PSR J2021+4026
- extended emission region 2HWC J2025+410* and 2HWC J2027+403* at Fermi cocoon / ARGO superbubble region
IHWC J1825-133

- Coincident with Pulsar Wind Nebula HESS J1825-137
- HESS Collaboration:
 - Claims spectrum hardens from $E^{-2.6}$ to E^{-2} from 1° to the center of the pulsar.
 - Interprets as electrons cooling and streaming from the central pulsar.
Geminga

- Extended TeV emission discovered by Milagro.
- Contributor to positron excess?

Yuksel, Kistler & Stanev. PRL. (2009)
Geminga Region

- Confirmation (~10σ pre-trial) of Geminga (PSR J0633+1746) by HAWC.
- Evidence (~6σ pre-trial) of a new extended source near PSR B0656+14.
- Both pulsars are similar in age and distance.

Paper in preparation!
Transients

- Around 60 known TeV Active Galactic Nuclei (AGN), yet most of the extragalactic sky has not been surveyed.
- HAWC’s 5σ sensitivity is (10, 1, 0.1) Crab in (3 min, 5 hrs, 1/3 yr).

Mrk 421

- Data from 2013/06/13 to 2014/07/09 in early HAWC data.
- HAWC coincident with the onset of a X-ray flare (ATEL 5320).
Mrk 421 & Mrk 501

PRELIMINARY
Pass 4

Mrk421
- constant flux best fit
- 7-transit running average
- 1-transit

Mrk501
- constant flux best fit
- 7-transit running average
- 1-transit

Int. flux > 10 TeV (ph cm⁻² s⁻¹)
First HAWC alert!

- HAWC has just started to provide prompt notification of flaring activity.
- Monitoring all gamma-ray sources visible to HAWC every day.

Astronomer’s Telegram to alert community of activity.
Perspectives for GRB detection

• Assume spectrum extends to 125 GeV and attenuation with EBL model of Gilmore
• HAWC: 200 events from GRB 090510 if near zenith
 ~few background events
• Major Improvements!
 – Low-threshold DAQ
 – 10-inch PMTs
 → HAWC would observe 100s of events for spectrum to only 31 GeV
HAWC Follow-up on 2.6 PeV IceCube Neutrino

IceCube Event
- Highest energy pointed astrophysical track-like event
- June 11, 2014, 4:54 UTC. (RA,Dec) = (110.3, 11.5)
- HAWC-111 live (pass1). Several hours out of HAWC’s FOV.
- Searches:
 - Integrated dataset (Steady, Aug 2013-May 2015)
 - Next Day / Prior Day
 - ±2 and ±5 days around the event.
 - All searches consistent with cosmic-ray background.

The steady neutrino flux, assuming it is evenly divided among N_s sources (IceCube, PRL 2014), should be detectable in HAWC in a year if photons are not attenuated.

We can set constraining limits on every IceCube event in the HAWC FOV.

IceCube ATel: #7856
HAWC Follow-up ATel: #7868
Fermi Bubbles

- Large-scale, non-uniform structures extending above and below the Galactic center.
- Both leptonic and hadronic model fit Fermi data.
- HAWC provides the firsts limits at TeV energies.
- Hard spectrum is unlikely (analysis in progress).
Cosmic Ray Anisotropy

- Small-scale (<60°). Large scale removed.
- 10° smoothing applied.
- 8.6 x 10^{10} events over 181 days.
- Three significant excess:
 - Region A: strongest. Harder spectrum than the background at 10TeV, consistent with Milagro.
 - Region B most extended.
 - Region C, confirms ARGO-YBJ observations.

Equatorial coordinates

significance [σ]
Cosmic Ray Anisotropy

- Region A has a spectrum harder than the cosmic-ray background.

![Graph showing energy distribution](image-url)
Other topics

- Diffuse emission.
- Dark matter searches.
- Extragalactic background light.
- Solar physics.
- Horizontal muons studies.
- Etc…
The Future of HAWC

Near future:

- HAWC will add more detectors to enhance the sensitivity above 10 TeV.
- Outriggers will help to accurately determine core position for showers off the main tank array.
- Increase effective area above 10 TeV by 3-4x
- Plans for ~300 tanks of 2500 liter tanks (1/80 HAWC tank).
- Funded by LANL, Mexico, MPIK. Firsts tests ongoing.

Future:

- HAWC South: Southern complement for CTA.
- Needs to be better: higher altitude, larger area, improved hadronic rejection, improved shower sensitivity.
Summary

Detector:
- HAWC is a second generation of EAS which started full operations in March 2015.
- HAWC is about 1 order of magnitude more sensitive than the predecessors EAS. It surveys more than half of the sky every day.
- Expected to run at least for 5yr, reaching 20mCrab sensitivity.

First Results:
- Galactic Plane survey (new sources).
- Flaring blazars observations.
- Geminga detection, etc.

Status:
- More than one year of data.
- First catalog, papers on the pipeline.
- First public transient alert.

Future:
- Outriggers, HAWC South.
Thanks for your attention!
Back-up slides
\(\gamma/h\) separation

![Graphs showing \(\gamma/h\) separation with data points and fitted curves for Surrounding Region and Crab Bin.]

Sabrina Casanova
Sabrina Casanova

HAWC Performance

Much Better Background Rejection

Much Better Angular Resolution

Much Better Low Energy Response

Better Energy Resolution

Overall x15 Milagro sensitivity
HAWC Inauguration

Detectors: 300 WCDs (4 PMTs each)
Field of view: 2sr instantaneous, 8sr daily
Average AR: 0.5 deg (68% containment)
E range: 100 GeV - 100 TeV sensitivity

Begging of full operations: Mar 20th 2015
Crab gamma-ray candidate

- Event reconstructed within 0.4° of the Crab Nebula.
Data Selection

- Divide the data in 9 analysis bins (nHit bins) based on the % of PMTs triggered in an event.
- First bin is defined for a given passing rate (5 kHz for HAWC250).
- The following bins are defined to decrease the rate by a factor 2.
- Apply G/H cuts, optimized on data to maximize the Crab significance:

BIN 1: 7-10%, ~0.6 TeV
BIN 9: 84-100%, ~25 TeV

Current HAWC G/H separation:
A. Smith (#397) poster 1 GA, July 30th 3.30pm
Data Selection

For the Crab Nebula analysis we use circular angular bins (a.k.a. top-hat).

We estimate the background using the direct integration technique:

The signal is defined as the excess over the background.

CTA-HAWC sensitivity

![Graph showing CTA-HAWC sensitivity](image-url)
GRB 130427A limits
HAWC DM limits

From Milagro to HAWC

- Higher altitude: 2630 m a.s.l. -> 4100 m a.s.l.
- Closer to the shower maximum.

![Graph showing the number of electromagnetic particles vs. radiation lengths for different energies (100 GeV, 1 TeV, 10 TeV, 100 TeV) with Milagro and HAWC at different altitudes.]

Sea level
HAWC
Milagro

Sabrina Casanova
From Milagro to HAWC

• Bigger detector: 4000 m² -> 22000 m².

Milagro

~60 m x 80 m

HAWC

~150 m x 150 m
From Milagro to HAWC

- Improve optical separation: one big pond -> individual water Cherenkov detectors (a.k.a. tanks)
- Taking data even during construction.
Steady Neutrino Flux assuming it is evenly divided among N_s sources (IceCube, PRL 2014):

$$E^2 \Phi_\nu(E) = \frac{4\pi}{N_s} 1.5 \times 10^{-11} \left(\frac{E}{100 \text{ TeV}}\right)^{-0.3} \text{ TeV/cm}^2 \text{ s}$$

Detectable in HAWC in a year.
If photons are not attenuated (i.e. nearby).
Limits on every IceCube event in our FOV.

HAWC limits are relevant and constraining...
Gamma/Hadron Separation

Rejection factor $\sim e^{-\langle \mu \rangle}$

Energy Distribution at ground level

Size of HAWC

Size of Milagro

deep layer

J Goodman — Particle Astrophysics – Univ. of Maryland

Spring 2016
Milagro/Fermi/HAWC Comparison

• HAWC is ~15x more sensitive (sig/√bg) than Milagro
 • HAWC sees the Crab at ~6σ in a day - Milagro took 6 months to see 6σ

• Taking into account the Fermi exposure and signal vs Milagro we find that for galactic sources Fermi is ~15x more sensitive than Milagro.

• HAWC at TeV has approximately the same sensitivity as Fermi has at GeV for galactic sources.
Detection Technique of the EAS Arrays

- In HAWC the particle detectors are tanks full of water. Particles from the shower pass through the water and induce Cherenkov light detected by PMTs.
- Gamma/hadron can be discriminated based on the event footprint on the detector. Although is one of the challenges of this kind of detectors.
The WCDs are filled with 200,000 l of purified water. The particles from the shower induce Cherenkov light in water, detected by the 4 PMTs.
HAWC Gamma-Ray Sky

HAWC 0.1—100 TeV, 1 year

significance [σ]
HAWC and Neutrino Telescopes
Multi-Messenger Complementarity

Neutrino / Photon Connection: Pions

\[
\begin{align*}
\pi^0 & \rightarrow \gamma \gamma \\
\pi^\pm & \rightarrow \mu \nu_\mu \rightarrow \nu_\mu \nu_\mu \nu_e \\
\frac{dN_\nu}{dE} & \sim \frac{dN_\gamma}{dE}
\end{align*}
\]

HAWC’s Strengths for IceCube Followup
- Wide FOV: Search for cascade coincidences.
- Continuous observation.
- Can search archival data.
- HAWC Sensitive up to 100 TeV

Gamma-Ray Burst

- Currently 2 search methods:
 - Follow-up on alerts from satellites (mostly Fermi-GBM).
 - Online search for GRBs. The plan is to deliver transient alerts in near-real time.
- Tested 18 GRBs from Swift. No detection yet.
- Expect 1-2 GRBs per year in HAWC (extrapolating from Fermi) *NIMA 742, 2014, 276-277.*

Null Hypothesis

Burst Search Significances

\[
\chi^2 / \text{ndf} = 32.5 / 36
\]

Mean \(-0.049 \pm 0.006 \)

Sigma \(1.014 \pm 0.005 \)

Reconstruct and analyze data in real time, within a few seconds of trigger. ~200 cores.

~4 sec reconstruction latency