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Abstract
Low-Power architectures are subject of much interest also as viable alternatives to 
traditional HPC platform. In this talk we will focus on

the performance that can now be obtained porting a large simulation toolkit (The 
EinsteinToolkit),  widely  used  in  Numerical  Astrophysics  to  simulated  matter 
coupled to the Einstein’s equations, to Low Power Architectures. 

We considered multicores / multi node cluster based on ARM and Intel low power 
processors  and  we  compared  results  with  a  traditional  HPC  cluster,  the  Galileo 
system at  CINECA.   The  work has  been performed using the  resources  actually 
available for the INFN-COSA project.

WE  NEED  TO  BE  READY  WHEN  LOW-POWER  SYSTEM  WILL  BE  THE 
STANDARD HIGH PERFORMANCE ARCHITECTURE



Plan of the talk
➡ The scientific case: high resolution simulation of inspiral and merger phase of 

binary neutron stars system ( one of source of  the gravitational waves  that are 
the observational target of the LIGO/VIRGO experiment )

➡ Computation performed using the The Einstein ToolKit

➡ Description of the code. 

➡ Performance of the code on Tier-1 system: Galileo at CINECA

➡ COSA low power systems

➡ Basic performance analysis 

➡ Porting of the  application  

➡ Comparative results analysis 



More on scientifical motivations
In the eve of Gravitational Wave physics the characterization of the gravitational wave 
signal emitted by compact binary source will be a prominent role. 

We present results for three-dimensional simulations of the dynamics of binary neutron 
star (BNS) mergers from the late inspiral stage and the post-merger up to ∼20 ms after 
the system has merged, either to form a hyper-massive neutron star (NS) or a rotating 
black hole (BH). We report here results for equal and un-equal-mass models and on the 
strength of the Gravitational Signal and its dependence on the EOS, the total  ADM 
mass and the mass ratio of the two stars.

We use a semi-realistic descriptions of the equation of state (EOS) where the EOS is 
described by a seven-segment piece-wise polytropic with a thermal component given 
by Γth=1.8. One of the important characteristics of the present investigation is that it is 
entirely performed using only publicly available open source software, the Einstein 
Toolkit for the evolution and the LORENE code for the generation of the initial models.



Gravitational Wave Astronomy just begun!
❖ The gravitational waves were detected 

on September 14, 2015 at 5:51 a.m. 
Eastern Daylight Time (09:51 UTC) by 
both of the twin Laser Interferometer 
Gravitational-wave Observatory (LIGO) 
detectors, located in Livingston, 
Louisiana, and Hanford, Washington, 
USA.

❖ The signal was observed with a matched-
filter signal-to-noise ratio of 24 and a 
false alarm rate estimated to be less than 
1 event per 203 000 years, equivalent to a 
significance greater than 5.1σ. The source 
lies at a luminosity distance of 410(18)  
Mpc corresponding to a redshift 
z=0.09(4). In the source frame, the initial 
black hole masses are 36(5)M⊙ and 
29(4)M⊙, and the final black hole mass is 
62(4)M⊙, with 3.0(5) M⊙c2 radiated in 
gravitational waves. All uncertainties 
define 90% credible intervals. 

Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 116, 061102 – Published 11 February 2016



Numerical Relativity in a nutshell

❖ Introduce a foliation of space-time

❖ write as a 3+1 evolution equation

❖ solve them on a computer !

Rµ⇥ �
1
2
gµ⇥R = 8�G Tµ⇥

�µTµ⇥ = 0

p = p(⇥, �)

Einstein Equations

Conservation of energy momentum

Equation of state

Conservation of baryon density

Tµ⇥ = (⇥(1 + �) + p)uµu⇥ + pgµ⇥
Ideal Fluid Matter



Why Numerical Relativity is hard!
❖ No obviously “better” formulation of Einstein's equations

❖ ADM, 

❖ conformal decomposition, 

❖ first-order hyperbolic form,.... ???

❖ Coordinates (spatial and time) do not have a special meaning

❖ this gauge freedom need to be carefully handled

❖ gauge conditions must avoid singularities

❖ gauge conditions must counteract “grid-stretching” 

❖ Einstein’s Field equations are highly non-linear

❖ Physical singularity are difficult to deal with



3+1 formulations of the metric.

:: lapse

:: shift vector

:: 3-metric



ADM evolutions

2

about 1.2 solar masses the bar was non persistent but nowwith

a dominant mode 1 instability in the final part of the simula-

tion.

So we explored the region of high betas instabilities (β !
0.255 without corotation point, see for example [23]) in non
too compact cores of about 1.5 solar masses.

In this parameters region as expected the barmode instabil-

ity is the dominant one and it can start without any pertur-

bation and also with a pre-existent m=1 perturbation and this

make more plausible it’s developement after the collapse, but

we claim that near the threshold it’s possible to see a strong

non-linear interaction between the modes and although the

bar might be here a persistent one it is erased in a dynami-

cal timescale by the growth of a competing mode 1 instability.

This implies that also in this favourable case the potential

strong persistent quasi-periodic signal seems to be suppressed

by the appearance of a weaker one-arm instability which pro-

duce a much lower gravitational signal then the barmode one.

Commentare il fatto che ci possono volere diversi millisec-

ondi prima che l’instabilit parta e che quindi potrebbe essere

necessaria una finestra temporale sufficiente nell’evoluzione

della stella. NOTARE che anche Saijo in [24] perturba tutte le

simulazioni con una perturbazione di modo 2

For reviews on the expected gravitational wave from neu-

tron stars instability see, for example, refs, [25, 26] and [27].

This work is organized as follow. In section II we give det-

tails on the evoultion methods used. In section III we discuss

the initial models and their properties used in this study. In

section IV we discuss the methodology used to analize the

numerical results of the simulations. In section V we discuss

the general dynamics of the bar-mode instability and its prop-

erties. In section VI we discuss the stability of the code and

the accuracy of the obtained results. In section VII we present

two different determination of the critical value for the onset

of instability. In section VIII we give dettails for the expected

gravitational radiation signal from the unstable models. In

section IX we disccus the implication of our results and of the

open problem still present.

We have consistently used the following convention. We

used a space like signature (−, +, +, +) for the four dimen-
sional metric. Greek indices (µ, ν . . .) are taken to run from
0 to 3, Latin indices (i, j, k, . . .) from 1 to 3 and we adopt

the standard convention for the summation over repeated in-

dices. We consistently used the notation xi = (x, y, z) for
spatial coordinates, x0 = t for the temporal coordinate and
r =

√

x2 + y2 + z2, ϖ =
√

x2 + y2, θ = arctan(ϖ/z),
ϕ = arctan(y/x) for the axial and spherical coordinates.
All the quantities are expressed in the system of adimensional

units in which c = G = M⊙ = 1 (unless explicitly stated).

II. EVOLUTION OF FIELDS ANDMATTER

The code and the method of the evolution is the same of the

one used in Baiotti et.all. [28] and therein described. For self

consistency we report here the main properties and character-

istic of the used simulation method. We have used the gen-

eral relativistic hydrodynamics Whisky code in which the

Einstein and hydrodynamics equations are written as finite-

differences on a Cartesian grid and solved using shock cap-

turing numerical schemes (a first description of the code was

given in [28]) and is a result of a collaboration among several

European Institutes [29].

The code has been constructed within the framework of

the Cactus Computational Toolkit (see [30] for details), de-

veloped at the Albert Einstein Institute (Golm) and at the

Louisiana State University (Baton Rouge). This public do-

main code provides high-level facilities such as paralleliza-

tion, input/output, portability on different platforms and sev-

eral evolution schemes to solve general systems of partial dif-

ferential equations. Clearly, special attention is dedicated to

the solution of the Einstein equations, whose matter-terms in

non-vacuum space-times are handled by the Whisky code.

While the Whisky code is entirely new, its initial develop-

ment has benefited in part from the release of a public ver-

sion of the general relativistic hydrodynamics code described

in [31, 32], and developed mostly by the group at the Wash-

ington University (St. Louis).

A. Evolution of Einstein equations

The original ADM formulation casts the Einstein equations

into a first-order (in time) quasi-linear [33] system of equa-

tions. The dependent variables are the three-metric γij and

the extrinsic curvature Kij , with first-order evolution equa-

tions given by

∂tγij = −2αKij + ∇iβj + ∇jβi, (2.1)

∂tKij = −∇i∇jα + α

[

Rij + K Kij − 2KimKm
j

−8π

(

Sij −
1

2
γijS

)

− 4πρ
ADM

γij

]

+βm∇mKij + Kim∇jβ
m + Kmj∇iβ

m.

(2.2)

Here, ∇i denotes the covariant derivative with respect to the

three-metric γij ,Rij is the Ricci curvature of the three-metric,

K ≡ γijKij is the trace of the extrinsic curvature, Sij is

the projection of the stress-energy tensor onto the space-like

hyper-surfaces and S ≡ γijSij (for a more detailed discus-

sion, see [34]). In addition to the evolution equations, the

Einstein equations also provide four constraint equations to

be satisfied on each space-like hyper-surface. These are the

Hamiltonian constraint equation

(3)R + K2 − KijK
ij − 16πρ

ADM
= 0 , (2.3)

and the momentum constraint equations

∇jK
ij − γij∇jK − 8πji = 0 . (2.4)

In equations (2.1)–(2.4), ρ
ADM

and ji are the energy density

and the momentum density as measured by an observer mov-

ing orthogonally to the space-like hyper-surfaces.
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Hamiltonian +  Momentum constraints

6 equations 
for the metric 

+1 constrain  equation

+3 constrain  equation

+6 equations for the 
time-coordinate 
derivative of the 
metric (extrinsic 
curvature) 



No better formulations……
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FIG. 4: Chronological table of formulations and their numerical tests (2001 ∼). Boxed ones are of proposals of formulation,
circled ones are related numerical experiments.

is a kind of definition, but can also be treated as a con-
straint.
!The BSSN formulation [15, 52, 53, 61]:
The fundamental dynamical variables are
(ϕ, γ̃ij ,K,Ãij ,Γ̃i).
The three-hypersurface Σ is foliated with gauge func-
tions, (α, βi), the lapse and shift vector.

• The evolution equations:

∂B
t ϕ = −(1/6)αK + (1/6)βi(∂iϕ) + (∂iβ

i), (17)

∂B
t γ̃ij = −2αÃij + γ̃ik(∂jβ

k) + γ̃jk(∂iβ
k)

−(2/3)γ̃ij(∂kβk) + βk(∂kγ̃ij), (18)

∂B
t K = −DiDiα + αÃijÃ

ij + (1/3)αK2 + βi(∂iK),(19)

∂B
t Ãij = −e−4ϕ(DiDjα)TF + e−4ϕα(RBSSN

ij )TF

+αKÃij − 2αÃikÃk
j + (∂iβ

k)Ãkj + (∂jβ
k)Ãki

−(2/3)(∂kβk)Ãij + βk(∂kÃij), (20)

∂B
t Γ̃

i = −2(∂jα)Ãij + 2α
(

Γ̃i
jkÃkj − (2/3)γ̃ij(∂jK)

+6Ãij(∂jϕ)
)

− ∂j

(

βk(∂k γ̃ij) − γ̃kj(∂kβi)

−γ̃ki(∂kβj) + (2/3)γ̃ij(∂kβk)
)

. (21)

• Constraint equations:

HBSSN = RBSSN + K2 − KijK
ij , (22)

MBSSN
i = MADM

i , (23)

Gi = Γ̃i − γ̃jkΓ̃i
jk, (24)

A = Ãij γ̃
ij , (25)

S = γ̃ − 1. ! (26)

(22) and (23) are the Hamiltonian and momentum con-
straints (the “kinematic” constraints), while the latter
three are “algebraic” constraints due to the requirements
of BSSN variables.

2. Remarks, Pros and Cons

Why BSSN is better than the standard ADM? To-
gether with numerical comparisons with the standard
ADM case[5], this question has been studied by many
groups using different approaches.

• Using numerical test evolutions, Alcubierre et al.
[4] found that the essential improvement is in the
process of replacing terms by the momentum con-
straints. They also pointed out that the eigenvalues
of BSSN evolution equations have fewer “zero eigen-
values” than those of ADM, and they conjectured
that the instability might be caused by these “zero
eigenvalues”.

• Miller[49] reported that BSSN has a wider range of
parameters that gives us stable evolutions in von
Neumann’s stability analysis.

• An effort was made to understand the advantage
of BSSN from the point of hyperbolization of the
equations in its linearized limit [4, 57], or with a
particular combination of slicing conditions plus
auxiliary variables[43]. If we define the 2nd order
symmetric hyperbolic form, then the principal part
of BSSN can be one of them[41].

FROM: Hisa-aki Shinka, Formulations of the Einstein equations for numerical simulations,  arXiv:0805.0068-

Z4 and Z4c 
with constraint 

dumping



The Einstein EQUATIONS

❖ BSSN version of the  
Einstein’s equations  
that introduce additional  
conformal variables:

❖ Matter evolution  
(B set to zero)  
using shock capturing  
methods based on the  
GRHydro code
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+17 additional grid variables to evolves 



The code: Einstein TOOLKIT + LORENE
• Cactus framework for parallel high performance computing (Grid 

computing, parallel I/O)
• Einstein Toolkit open set of over 100 Cactus thorns for 

computational relativity along with associated tools for simulation 
management and visualization

• Mesh refinement with Carpet 

• Matter Evolution with GRHydro:  
(Magnetic+CT evolution of Magnetic Field) 
HLLE Riemann Solver  
WENO Reconstruction methods (*)  
PPM Reconstruction methods

• Metric evolution MacClacan: 
BSSN gravitational evolutions (*)  
Z4 gravitational evolutions 

• Initial data computed using di LORENE CODE



How big is the code size
❖ The ET_2015_05 distribution (just counting the files):

❖ F77 source file: 91 (25483 lines)

❖ F90 source file: 508 (154515 lines)

❖ C99 source file: 870 (419132 lines)

❖ C++ source file: 391 (219645 lines)

❖ Plus the personalization and extra codes.

❖ Impossible to rewrite the code for any new architecture !

❖ We do have to relay on COMPILER !

❖ The code must run in a machine neutral way (you can’t know on which machine 
you will obtain an allocation)



The computational challenge: minimal requirement. 

❖ Cartesian grid with at-least 6 refinement  
levels.

❖ Standard Resolution in the finest  
grid 0.25 CU and up to 0.125 CU.  
=> from 5,337,100 grid points and up  
     to 42,696,800 for each refinement level.

❖ Outer grid extends to 720M (1063Km) to extract gravitational 
waves far from the source.

❖ One extra refinement level added just before collapse to 
black hole. 

❖ 17 spacetime variables + 4 gauge variables + 5 base 
variables evolved in each point + all the additional and 
derived variable needed to formulate the problem.

❖ MPI+OpenMP code parallelization already in place.
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Level min(x/y) max(x/y) min(z) max(z) (N
x

, N

y

, N

z

)
(CU) (CU) (CU) (CU) dx = 0.25

1 ≠720 720 0 720 (185,185,96)
2 ≠360 360 0 360 (205,205,106)
3 ≠180 180 0 180 (205,205,106)
4 ≠90 90 0 90 (205,205,106)
5 ≠60 60 0 30 (265,265,76)
6 ≠30 30 0 15 (265,265,76)

(7 ≠15 15 0 7.5) (265,265,76)

TABLE V. Simulation grid boundaries of refinement levels.
Level 7 is only used for simulations forming a BH, once the
minimum of the lapse – < 0.5. Resolutions as reported in
this paper always refer to grid 6.

—x (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053
total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tier1 machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a
BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).

however, are not the only variables to consider. Required
memory puts a lower bound on the size of the employed
resources, while an upper bound is present at the break-
down of strong scaling.

To quantify these needs, the resolution and the size of
the computational grid are most important. Table V
shows the characteristics of the grid we used for the
present work. In particular we use a fixed structure of
mesh-refined, centered grids, with the exception of an
additional refinement level for simulations resulting in
an apparent horizons, and then only after merge (when
the minimum of the lapse – on the grid dropped below
0.5). In the last column of Table V we show the actual
grid-size in computation-points of each level, for resolu-
tion dx = 0.25 CU. Clearly the actual grid size (including
ghost-zones and bu�er-zones) changes varying with res-
olution, and is not explicitly shown here for that reason.

With the computational domain completely specified,
the next step of an analysis of the computational cost
is to asses the cost for a full simulation of a particular
model at the desired resolution. Table VI shows the ac-
tual simulation cost as function of resolution, for a partic-
ular High-Performance-Computer (HPC) system used in
the present research program, namely the “GALILEO”
system installed at the Italian CINECA supercomputer
center. As it was discussed in the conclusion, our result
show that the combined use of BSSN-NOK and WENO
allows the possibility to find qualitatively accurate results
in agreement with high-resolutions simulations. This is
a very desirable feature since it allows researchers to
quickly scan numerous di�erent models in order to se-
lect the most interesting for further study using higher
resolution.

All of our results have been produced using open source
and freely available software, the Einstein Toolkit for the
dynamical evolution and the LORENE library for gener-
ating the initial models. That means that the whole set
of our result can be reproduced and re-analyzed by re-
running the simulation from a common code-base. Some
modifications of the above mentioned software were nec-
essary, but these changes are also open source, and are
available for download from the University of Parma
WEB web server of the gravitational group [83]. We
kindly ask to cite this work if you find any of the ma-
terial there useful for your own research.
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Computational environment (                                                   )     
❖ Project developed almost entirely 

using computational resource 
provided by INFN:

❖ Development: ZEFIRO (INFN-PI)
❖ Production: GALILEO (SUMA) 
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Modeling Equal and Unequal Mass Binary Neutron Star Mergers Using Public Codes

Roberto De Pietri, Alessandra Feo, and Francesco Maione
Parma University and INFN Parma, Parco Area delle Scienze 7/A, I-43124 Parma (PR), Italy

Frank Lö�er
Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803 USA

(Dated: February 13, 2016)

We present three-dimensional simulations of the dynamics of binary neutron star (BNS) mergers
from the late stage of the inspiral process up to ≥ 20 ms after the system has merged, either to
form a hyper-massive neutron star (NS) or a rotating black hole (BH). We investigate five equal-
mass models of total gravitational mass 2.207, 2.373, 2.537, 2.697 and 2.854 M§, respectively;
and four unequal mass models with MADM ƒ 2.53 M§ and q ƒ 0.94, 0.88, 0.83, and 0.77 (where
q = M

(1)
/M

(2) is the mass ratio). We use a semi-realistic equation of state (EOS), namely the
seven-segment piece-wise polytropic SLyPP with a thermal component given by �

th

= 1.8. We
have also compared the resulting dynamics (for one model) using both, the BSSN-NOK and CCZ4
methods for the evolution of the gravitational sector, and also di�erent reconstruction methods for
the matter sector, namely PPM, WENO and MP5. Our results show agreement and high resolution,
but superiority of BSSN-NOK supplemented by WENO reconstruction at lower resolutions.

One of the important characteristics of the present investigation is that for the first time, it has
been done using only publicly available open source software: the Einstein Toolkit code, deployed
for the dynamical evolution; and the LORENE code, for the generation of the initial models. All of
the source code and parameters used for the simulations have been made publicly available. This
not only makes it possible to re-run and re-analyze our data, but also enables others to directly
build upon this work for future research.

PACS numbers: 04.25.D-, 04.40.Dg, 95.30.Lz, 97.60.Jd

I. INTRODUCTION

The new generation of ground-based laser interferom-
eter gravitational wave observatory Advanced LIGO [1]
and Advanced Virgo [2] have just now opened a new
window in the Universe with the first detection [3] of
Gravitational Waves (GW) emitted by the merger of two
black holes. Among other likely sources of GW signals
in the sensitive frequency band of (40 ≠ 2000) Hz are sig-
nals from binary neutron star (BNS) mergers, with ex-
pected event rates reaching ¥ 0.2≠200 per year between
2016 ≠ 19 [4, 5]. Signals from these events are expected
to contain the signature of the equation of state (EOS)
governing matter at nuclear density.

In the description of the BNS mergers are involved es-
sentially three stages, the inspiral, the merger and the
final evolution to its final state (post-merger stage) that
would quite likely be a final black hole (BH) surrounded
by an accretion disk. The inspiral phase can be mod-
eled with good accuracy by post-Newtonian calculations
and, in particular, using the E�ective One Body (EOB)
approach [6]. They are capable of producing accurate
waveforms up to a time very close to the merger. More
recently, the EOB approach started to be used to model
tidal corrections [7, 8]. These analytic techniques are use-
ful for quickly computing waveform templates to matched
filtering searches in GW detector data analysis. The role
of Numerical Relativity (NR) in this regime is mainly
to test and help improve the properties of these ana-
lytic techniques. However, one has to keep in mind that

such comparison and improvement would need the use
of NR data extrapolated at infinite resolutions or at a
resolution where discretization errors are negligible. To
do this analysis, the convergence properties of the used
code during the inspiral phase needs to be known. For
the post-merger stage, NR is the only available investiga-
tion tool to confront the experimental result that would
be obtained by a successful LIGO/VIRGO detection with
the underlying physics of neutron stars (NS). As pointed
out in [9, 10] and in references therein, an accurate de-
scription of the GW emission of di�erent model sources
(models inferred by di�erent choice of the underlying NS
physics through di�erent choices of EOS) are useful for
developing empirical relations to be able to infer NS pa-
rameters from future GW detections as well as to get
information on the correct EOS that describe matter at
these extreme conditions.

In this work, we concentrate on the information that
can be extracted from BNS simulations using the SLy
EOS [11], where a semi-realistic seven-segment piece-
wise (isentropic)-polytropic approximant [12], namely
the SLyPP EOS, is used and whose di�erent parame-
ters are reported in Table I. Such an approximant covers
the whole range of density simulated, starting from the
NR atmosphere of 6.18 · 106 g/cm3 up to the density
in the interior of the NS supplemented by an artificial
thermal component to ensure that the hydro-dynamical
evolution is consistent with the Energy-Momentum ten-
sor conservation. To such extent, we simulated five equal
mass BNS systems and four unequal mass systems, and
for each of these systems we simulated the late-inspiral
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Level min(x/y) max(x/y) min(z) max(z) (N
x

, N

y

, N

z

)
(CU) (CU) (CU) (CU) dx = 0.25

1 ≠720 720 0 720 (185,185,96)
2 ≠360 360 0 360 (205,205,106)
3 ≠180 180 0 180 (205,205,106)
4 ≠90 90 0 90 (205,205,106)
5 ≠60 60 0 30 (265,265,76)
6 ≠30 30 0 15 (265,265,76)

(7 ≠15 15 0 7.5) (265,265,76)

TABLE V. Simulation grid boundaries of refinement levels.
Level 7 is only used for simulations forming a BH, once the
minimum of the lapse – < 0.5. Resolutions as reported in
this paper always refer to grid 6.

—x (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053
total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tier1 machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a
BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).

however, are not the only variables to consider. Required
memory puts a lower bound on the size of the employed
resources, while an upper bound is present at the break-
down of strong scaling.

To quantify these needs, the resolution and the size of
the computational grid are most important. Table V
shows the characteristics of the grid we used for the
present work. In particular we use a fixed structure of
mesh-refined, centered grids, with the exception of an ad-
ditional refinement level for simulations resulting in an
apparent horizon, and then only starting shortly before
the merger (when the minimum of the lapse – on the grid
dropped below 0.5). In the last column of Table V we
show the actual grid-size in computation-points of each
level, for resolution dx = 0.25 CU. Clearly the actual
grid size (including ghost-zones and bu�er-zones) changes
varying with resolution, and is not explicitly shown here
for that reason.

With the computational domain completely specified,
the next step of an analysis of the computational cost
is to asses the cost for a full simulation of a particular
model at the desired resolution. Table VI shows the ac-
tual simulation cost as function of resolution, for a partic-
ular High-Performance-Computer (HPC) system used in
the present research program, namely the “GALILEO”
system installed at the Italian CINECA supercomputer
center. As it was discussed in the conclusion, our result
show that the combined use of BSSN-NOK and WENO
allows the possibility to find qualitatively accurate results
in agreement with high-resolutions simulations. This is
a very desirable feature since it allows researchers to
quickly scan numerous di�erent models in order to se-
lect the most interesting for further study using higher
resolution.

All of our results have been produced using open source
and freely available software, the Einstein Toolkit for the
dynamical evolution and the LORENE library for gener-
ating the initial models. That means that the whole set
of our result can be reproduced and re-analyzed by re-
running the simulation from a common code-base. Some
modifications of the above mentioned software were nec-
essary, but these changes are also open source, and are
available for download from the University of Parma
WEB web server of the gravitational group [81]. We
kindly ask to cite this work if you find any of the ma-
terial there useful for your own research.
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FIG. 11. Angular momentum and mass budget for the evolu-
tion of models SLy15vs15 (left) and SLy16vs16 (right). The
blue, dashed, horizontal line indicates the ADM mass of the
initial data, as calculated by Lorene. The red area (hatched
from the bottom left to the top right) shows the contribution
from matter left on the grid, while the green area, hatched
from the top left to the bottom right, shows contributions
from emitted GW, plotted in retarded time with regard to
the position of the detector, assuming emission from the ori-
gin. The bottom-most, black, solid line indicates the angular
momentum and mass of the BH. For both models, the sum
of these three contributions remains close during the entire
evolution.

rect form of the low density-section of the EOS should
be important for the description of the disk and matter
surrounding the remnant BH.

We studied the convergence properties of the numeri-
cal evolution in the inspiral phase, focusing on the value
of the merger time computed for simulations with dif-
ferent resolutions and di�erent numerical methods. We
tried three di�erent methods for the reconstruction of
hydrodynamical variables (WENO, PPM and MP5) and
two di�erent evolution schemes for the gravitational sec-
tor (BSSN-NOK and CCZ4). The merger time showed
second order convergence, and our results for the di�er-
ent methods, for resolution dx = 0.25 CU and better, do
agree. We have explicitly shown that we achieve second-
order convergence in the inspiral phase when PPM or
WENO reconstruction is combined with the BSSN-NOK
methods. In the other two cases we find that a much
higher resolution is needed to explicitly show that a sim-
ilar order-two convergence is present. Our result seems
to indicate that to achieve reliable results at lower res-
olutions the combined use of BSSN-NOK and WENO
seems the best setup, out of the ones we tested. This
analysis allowed us to extrapolate the merger time for all

simulated models for infinite resolution dx = 0.
In addition, we compared to two BNS models of the

same total baryonic mass (M
0

= 2.8 M§) as model
SLy14vs14 but with only one piece-wise component,
and the same thermal part but di�erent sti�ness. The
first model, G300th14vs14, has the same average sti�-
ness (� = 3.00) as the SLyPP EOS, while the other
model, G275th14vs14, shows a softer average sti�ness
(� = 2.75), which is the same as that of the Shen EOS
(see [23]). Using these, we find that the merger time
increased only by a fraction (from 10.4 ms to 11.7 ms)
in the case of G300th14vs14, while it is significantly de-
creased (from 10.4 ms to 5.9 ms) in the case of the softer
G275th14vs14 model, which we attribute to the expecta-
tion that tidal e�ects are greater when the deformability
of the Star is increased (like in the case of softer sti�-
ness). In the after-merger stage we observed only a small
variation in the position of the peak for the gravitational
wave emission in the first case, while the later model
shows substantial di�erences to the SLy14vs14 compari-
son model.

ACKNOWLEDGMENTS

This project greatly benefited from the availability of
public software that enabled us to conduct all simula-
tions, namely “LORENE” and the “Einstein Toolkit”.
We express our gratitude the many people that con-
tributed to their realization.

This work would have not been possible without the
support of the SUMA INFN project that provided the
financial support of the work of AF and the computer
resources of the CINECA “GALILEO” HPC Machine,
where most of the simulations were performed. Other
computational resources were provided by he Louisiana
Optical Network Initiative (QB2, allocations loni_hyrel,
loni_numrel and loni_cactus), and by the LSU HPC
facilities (SuperMike II, allocations hpc_hyrel15 and
hpc_numrel). FL is directly supported by, and this
project heavily used infrastructure developed using sup-
port from the National Science Foundation in the USA
(Grants No. 1212401, No. 1212426, No. 1212433, No.
1212460). Partial support from INFN “Iniziativa Speci-
fica TEONGRAV” and by the “NewCompStar”, COST
Action MP1304, are kindly acknowledged.

We also graciously thank Dennis Castleberry for proof-
reading the manuscript.

Appendix A: Computational Cost

The implementation of any computational intensive re-
search program like the one developed in the present work
needs a careful analysis of the computational cost of the
simulations (the number of CPU core hours needed to
perform each simulation) and a careful management of
resources. In that, speed, and with that total runtime,

MARC

50 ms in a week

Zefiro is a cluster of the SUMA project SUMA Project,  
It's made up of 32 computer each with 512 GB  
4 processors (each with 16 cores).  
Total of 2048 computing cores  
AMD Opteron 6380 (2,5GHz)  
Infiniband connection QDR  
(switch: 36 ports  Mellanox IS5025).

Model: IBM NeXtScale (Lenovo)

Architecture: Linux Infiniband Cluster

Nodes: 516  RAM: 128 GB/node, 8 GB/core

Processors: 2 8-cores Intel Haswell 2.40 GHz per node 
Cores: 16 cores/node, 8256 cores in total 
Accelerators: 

2 Intel Phi 7120p per node on 384 nodes (768 in total);

 2 NVIDIA K80 per node on 40 nodes  
Internal Network: Infiniband with 4x QDR switches 
Disk Space: 2.000 TB of local scratch 
Peak Performance: 1.000 TFlop/s (to be defined)

http://vh2.pi.infn.it/
http://www.cpu-world.com/CPUs/Bulldozer/AMD-Opteron%206380%20-%20OS6380WKTGGHK.html
http://www.mellanox.com/related-docs/prod_ib_switch_systems/PB_IS5025.pdf


Computational Costs (2)
❖ Typical run requires at least 

108 GByte of allocated RAM 
(dx=0.25)

❖ Even the coarser resolution 
would require 4 GByte of 
allocated RAM (dx=0.75)
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Level min(x/y) max(x/y) min(z) max(z) (N
x

, N

y

, N

z

)
(CU) (CU) (CU) (CU) dx = 0.25

1 ≠720 720 0 720 (185,185,96)
2 ≠360 360 0 360 (205,205,106)
3 ≠180 180 0 180 (205,205,106)
4 ≠90 90 0 90 (205,205,106)
5 ≠60 60 0 30 (265,265,76)
6 ≠30 30 0 15 (265,265,76)

(7 ≠15 15 0 7.5) (265,265,76)

TABLE V. Simulation grid boundaries of refinement levels.
Level 7 is only used for simulations forming a BH, once the
minimum of the lapse – < 0.5. Resolutions as reported in
this paper always refer to grid 6.

—x (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053
total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tier1 machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a
BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).

however, are not the only variables to consider. Required
memory puts a lower bound on the size of the employed
resources, while an upper bound is present at the break-
down of strong scaling.

To quantify these needs, the resolution and the size of
the computational grid are most important. Table V
shows the characteristics of the grid we used for the
present work. In particular we use a fixed structure of
mesh-refined, centered grids, with the exception of an ad-
ditional refinement level for simulations resulting in an
apparent horizon, and then only starting shortly before
the merger (when the minimum of the lapse – on the grid
dropped below 0.5). In the last column of Table V we
show the actual grid-size in computation-points of each
level, for resolution dx = 0.25 CU. Clearly the actual
grid size (including ghost-zones and bu�er-zones) changes
varying with resolution, and is not explicitly shown here
for that reason.

With the computational domain completely specified,
the next step of an analysis of the computational cost
is to asses the cost for a full simulation of a particular
model at the desired resolution. Table VI shows the ac-
tual simulation cost as function of resolution, for a partic-
ular High-Performance-Computer (HPC) system used in
the present research program, namely the “GALILEO”
system installed at the Italian CINECA supercomputer
center. As it was discussed in the conclusion, our result
show that the combined use of BSSN-NOK and WENO
allows the possibility to find qualitatively accurate results
in agreement with high-resolutions simulations. This is
a very desirable feature since it allows researchers to
quickly scan numerous di�erent models in order to se-
lect the most interesting for further study using higher
resolution.

All of our results have been produced using open source
and freely available software, the Einstein Toolkit for the
dynamical evolution and the LORENE library for gener-
ating the initial models. That means that the whole set
of our result can be reproduced and re-analyzed by re-
running the simulation from a common code-base. Some
modifications of the above mentioned software were nec-
essary, but these changes are also open source, and are
available for download from the University of Parma
WEB web server of the gravitational group [81]. We
kindly ask to cite this work if you find any of the ma-
terial there useful for your own research.
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Delayed Black-Hole Formation



Production configuration used on COSA systems
❖ The same code, grid structure, initial data … used to perform 

the production runs on HPC computers (Fermi,GALILEO, 
queenbee, super mike, stampede,…) but additional  symmetry 
imposed and use of of a very course resolution of dx=0.75 (not 
0.25) to have a memory configuration below 2-GBytes.

❖ Performance on GALILEO:
 
   statistics from CarpetLib: 
   Current allocated memory:  1715.999 MB 
   Maximum number of objects: 1146 
   Maximum allocated memory:  1722.232 MB 
   SPEED AT ITERATION 256 ——->   
       (1 CORE)  68.1962289 CU/hours   
       (2 CORE) 112.825     
       (4 CORE) 178.3600 
       (8 CORE) 241.6999574 

❖ Not a test code … but the actual code used in research !

50 ms in a week



Galileo and COSA architectures
System Node HS06

(thanks to D.Cesini)
GPU Network

Galileo 2 XEON E5-2630, 64 bit, 2.4 GHz
Cores: 16 cores (32 threads)
Ram: 128GB
TDP= 100 W x 2

359 (ht)
278 (ht off)

3.5 HS06/W (ht)

Nvidia K80
4992 Cuda cores

24GB GDDR5
8740 GFlops SP
2900 GFlops DP

Infiniband 
 QDR 4x

 (16 Gb/s)

XEON-D XEON D-1540, 64 bit,  2.0 GHz
Cores: 8 (16 threads)
Ram: 16 GB  
 90 W 

151 (ht)
133 (ht off)

1.68 HS06/W (ht)

Infiniband 
FDR

Avoton Atom C2750, 64 bit,  2.4 GHz
Cores: 8 (no threads)
Ram:  16 GB
24 W

55 (ht)

2.2 HS06/W (ht)

GbE

Jetson TK1 ARM-A15, 32bit,  2.3 GHz
Cores: 4 
Ram: 2 GB
 14 W

28 

2 HS06/W

Nvidia Kepler SoC
192 Cuda cores
326 Gflops SP

GbE

Jetson TX1
(future)

ARM A57/A53, 64 bit, 2 GHz
Cores: 4 A57 + 4 A53
Ram  4 GB

? Nvidia Maxwell SoC
256 Cuda  cores
512 GFlops SP

GbE



Basic performance analysis (MPI)
❖ Memory and Network Bandwidth (experimental) of the systems.

Memory and Network performance determined with the  IMB-MPI intel’s benchmark



Node Performance
System Node HS06

(thanks to D.Cesini)
GPU Network ET Speed

(maximal on a node)

Galileo 2 XEON E5-2630, 64 bit, 2.4 
GHz
Cores: 16 cores (32 threads)
Ram: 128GB
TDP= 100 W x 2
(?- solo processore)

359 (ht)
278 (ht off)

3.5 HS06/W (ht)

Nvidia K80
4992 Cuda cores

24GB GDDR5
8740 GFlops SP
2900 GFlops DP

Infiniband 
 QDR 4x

 (16 Gb/s)

 518 [261]  (1x2x8=16 thread)
769 [427] (2x2x8=32 thread)
734 [665] (4x2x8=64 thread)

XEON-D XEON D-1540, 64 bit,  2.0 
GHz
Cores: 8 (16 threads)
Ram: 16 GB  
 90 W 

151 (ht)
133 (ht off)

1.68 HS06/W (ht)

Infiniband 
FDR 96,12 (1x2x4=8thread)

114.97 (2x2x4=8thread)

Avoton Atom C2750, 64 bit,  2.4 GHz
Cores: 8 (no threads)
Ram:  16 GB
24 W

55 (ht)

2.2 HS06/W (ht)

GbE 62.86 (1x2x4=8 thread )
81.86 (2x4x2=16 thread )
79.07 (4x2x4=16 thread )

Jetson TK1 ARM-A15, 32bit,  2.3 GHz
Cores: 4 
Ram: 2 GB
 14 W

28 

2 HS06/W

Nvidia Kepler SoC
192 Cuda cores
326 Gflops SP

GbE 41,22 (2x1x4=8 thread)
49,72 (4x1x4=16 thread)

Jetson TX1
(future)

ARM A57/A53, 64 bit, 2 GHz
Cores: 4 A57 + 4 A53
Ram  4 GB

? Nvidia Maxwell SoC
256 Cuda  cores
512 GFlops SP

GbE ?



Speed-up

HS06



Conclusions
❖ GOOD NEWS: the framework works on LOW-POWER ARCHITECTURE.

❖ BAD NEWS: performance not up to the par of traditional High-End Processor. 
Memory limitation would require an even higher number of  nodes interconnected 
with a high speed network. 

❖ FUTURE HARDWARE REQUIREMENTS: In order to run our application on Low 
Power architectures at production level we need to exploit the accelerator present 
on the system (GPU) in order to speed up the computation; moreover we need 
nodes with larger amount of memory and a high speed network interconnection.

❖ FUTURE PROGRAMMING REQUIREMENTS: Hardware HPC architectures 
evolve too fast with respect the capacity of a large  scientific collaboration to modify 
the code  to support new features. We needs new programming paradigms able to 
transparently support new hardware features and to guarantee the portability of the 
code. Exploration of the OpenMP 4.0 framework just started.
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