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Cortical Areas and Columns

Cortical Area: A segment of Cortical Column: a group of neurons

the cerebral cortex that carries in the cortex that can be successively

out a given function penetrated by a probe inserted
perpendicularly to the cortical

surface.

3D cortical field

Columns are subdivided in 5/6
specialized layers.
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Intra and Inter-areal connections

Q K.Brodmann "Vergleichende Lokalisationslehre der
Grosshirnrinde" 1909 Leipzig: Johann Ambrosius Barth

Grey Matter
Neurons + Intra-areal connections

Short range communication

White Matter

Long Range Inter-areal Communication

Q V. Braitenberg.“grey substance and white substance” Brain 2007
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A Challenging Problem

The simulation of the cortical areas activity can be accelerated
using parallel/distributed many-processor computing systems.
However, there are several challenges, including:

— Neural networks heavily interconnected at multiple distances, local

activity rapidly produces effects at all distances =
Prototype of non-trivial parallelization problem

— Each neural spike originates a cascade of synaptic events at multiple
times: t + At, 2 Complex data structures and synchronization. Mixed
time-driven (delivery of spiking message) and event-driven (neural
dynamic and synaptic activity)

— Multiple time-scales (neural, synaptic, long and short term plasticity
models) = Non-trivial synchronization at all scales

— Gigantic synaptic data-base. A key issue for large scale simulations =2
Clever parallel resource management required.



DPSNN
Distributed Polychronous Spiking Neural Net

Application code for simulation of in-vivo/in-vitro neural networks

...and and evaluation of off-the-shelf and custom computing
systems.

Point-like Neuron Models, focus is in synaptic in connectivity.
C++ plus MPI.
Developed by P.S. Paolucci and E. Pastorelli (INFN APE Lab).



Point-like Neurons
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Neuron Models
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Neural Spiking Model: the Izhikevich neuron

—> when a neuron spikes, all its M outgoing
( (Av _ v ()% — u(t) + I(£) synapses add a current W, to neurons they are

if v(t) < Vpear then | ifl connected to, with a set of different delays
—=a(bv(t)—rc) . .
\ At (polychronicity).

(v(t) = Vpeak

if v(t) = vpo then {V(t+AL)ec

\ \u(t +At) «u(t)+d Ity +t))=... +W+...

. . I(ty+ t,)=... +W,+...
The dynamical variables of the

. I(t,+ t),)=... +Wy,+...
single neuron are v(t) and u(t): ot )= + Wt

u(t) is an auxiliary variable (the
recovery current bringing back v to

equilibrium);

I(t) is the potential change generated by the
v(t) is the neural membrane sum of the currents from all synapses incoming
potential; this is the key to the neuron. It is a ‘forcing function’: incoming
observable! — when v reaches currents are present if spikes arrived form pre-
Voeake @ NEUral spike is produced - synaptic neurons.
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lzhikevich Neuron Model

Summary of the neuro-
computational properties of
biological spiking neurons.
The same model, (Izhikevich
(2003) with different values
of parameters, reproduces in
these pictures fundamental
computations performed by
several types of cortical
neurons.

Each horizontal bar
corresponds to 20 ms.
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Eugene M. Izhikevich — IEEE Trans. Neural Networks

15-5 (2004) pag. 1063-1070
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Spike-Timing Dependent Plasticity

\
post — tprs = Gaxon

if t20 AWppgpoe =A,€ T+

if t <0

F (%)

-40 -20 20
-0.2

-0.4

. At (ITIS)

S. Song et al., Nature Neuroscience 3 (2000)

~ | Long Term Potentiation and Depression

t
MWprepose = A€ | . LTP: the synapse weight is maximally
potentiated if the pre-synaptic spike
arrives to the target just before the post-
synaptic spike

- LTD: the synapse weight is maximally
depressed if the pre-synaptic spike
arrives to the target just after the post-
synaptic spike

STDP depends on the relative timing of pre- and postsynaptic action potentials. It is an
evolution of the Hebbian learning rule that captures also causality and anti-causality
relations. It adds the competitiveness to the classical associative Hebbian learning rule.
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LIFCA Neuron Model

T, =—Vv+ R - c)
T, = —C
v(t + At) = VUreset
c(t+At) =c(t) + a,

if v(t) <vy then {

if v(t) > vy then {

Leaky Integrate

=p(t) is the membrane potential;

mc(t) is the adaption variable due to Ca* currents
=] are the incoming currents

"R is membrane resistance

"V g is the voltage threshold

"V,..set 1S the reset membrane potential

=T, is the decay time constant of v

=T. is the decay time constant of ¢

"a . is the post-spike Ca* concentration increment

V (blue) C (red) | (green) in DPSNN

and Fire neuron
with spike
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Distribution of Cortical Modules among MPI
Processes and Synaptic Connectivity

A sample grid of
64=8x8 neural
columns.

Excitatory neurons
projects 76% of their
synapses toward
neurons located in the
same column, 3% to
first neighbouring
columns, 2% to second
neighbours and 1% to
third neighbour.
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1%

2%| 3%| 2%

1%| 3%| 76%| 3%| 1%

2%| 3%| 2%

1%

a) Grid of 64 processes: 1 column per
MPI process

1%

2%| 3% 2%

1%| 3%| 76%| 3%| 1%

2%| 3% 2%

1%

b) Grid of 4 MPI processes:
16 columns per process
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2%

76% | 3% | 1%

¢) Grid of 256 processes: % of column
per MPI process

One core can host
one or more MPI
processes.
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Example of Simulation of
Spiking Activity and Synaptic Plasticity

B The picture represents the
evolution of a single Cortical

Module computed by the DPSN
STDP code

B In this example, Cortical
3 200 inhibitory neurons
3 800 excitatory neurons
d Time resolution: 1ms

. . ’ ] # ’ ‘ l
( h orizo nta | axis ) /EEJ\ W \ ‘{\th,.('\ﬁ',- W ,.w&‘,‘m'}l/\,n"\_ﬂ..%‘«\.»‘w‘r"r-np'l/\wﬂ ""f“.’/w MeAR '»“-."W‘Wf A

0 Each dot in the rastergram
represents an individual spike

d The evolution of the
membrane potential of each
neuron is simulated
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Collective Spiking Rastergram and activity of individual neurons
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Emergent Biological Behaviour: Spontaneous
Evolution of Rythmic Activity

As synaptic weights evolve according to STDP (synaptic spike-timing dependent
plasticity, initial delta frequency oscillations (2-4 Hz @ first second activity) dissolves
for a while into uncorrelated Poissonian activity (activity @ 100 seconds) and then
gamma frequency activity emerges (30-100 HZ @ 3600 seconds)
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Simulation of Cortical Area Activity

Simulation of 40x40 cortical columns, each column composed of 2500
neurons, each neuron projecting ~1600 synapses, for a total of 4M neurons
and ~6G synapses.

The colour of each dot represents the mean firing rate of a cortical column.
t = 38500 ms
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DPSNN
Strong and Weak Scaling

Strong Scaling
elapsed sec / (simulated sec * total syn * firing rate)

1.0E-06

1.0E-07
c @ Ideal Scaling

Iy ® 24x24-0.9GSyn-
(]

e e 0.7MNeu
'

s
pa o © 48x48-3.5GSyn-
%
° o 2.9MNeu
1.0E-09
[ ]

Exec time per synaptic event

@ ® 96x96-14.2GSyn-
° 11.4MNeu

1.0e-10
1 4 16 64 256 1024

# of cores = # of processes

1.6E-06

8.0E-07

4.0E-07

2.0E-07

Exec time per syn. event per core

Weak Scaling

elapsed sec / (simulated sec * syn per core * firing rate)

PNt

4 16 64 256

# of cores = # of processes

1024

—e-13.8 Msyn/core
—4—18.5 Msyn/core
—-27.7 Msyn/core
55.4 Msyn/core
—+—110.7 Msyn/core

—<221.4 Msyn/core

Weak scaling for various local network
sizes. Exec time normalized to synapse

count.

Strong scaling. From 1 to 1024 cores (INTEL Xeon Haswell E5-2630 v3 8-cores @ 2.4 GHz)
simulate various total network sizes (from 0.9 to 14.2 Giga synapses).

Exec time normalized to synaptic events.
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DPSNN on low-power computing architectures

* Evaluate the performaces of low-power
processors in scalable simulations of spiking

neural network models.

* Compare performances against traditional
server-platform processors.

* Try to identify the critical architectural
features enabling better time-to-solution and
energy-to-solution figures on this application.



The low-power platform: nVIDIA Jetson TK1

Dimensions: 5" x 5" (127mm x
127mm)

Tegra K1 SOC (CPU+GPU+ISP in a
single chip)

GPU: NVIDIA Kepler "GK20a" GPU
with 192 SM3.2 CUDA cores (up to
326 GFLOPS in single precision)
CPU: NVIDIA "4-Plus-1" 2.32GHz

ARM quad-core Cortex-A15 CPU ey |
with Cortex-A15 battery-saving Kepler GPU ic‘.‘,;@g,‘;’fﬁsi
shadow-core -
DRAM: 2GB DDR3L 933MHz EMC

x16 using 64-bit data width L Voo Vo' Ao
Storage: 16GB fast eMMC 4.51
Ethernet: RTL8111GS Realtek
10/100/1000Base-T Gigabit LAN

USB  SECURITY Dual
07T TENCINE' TR Ircpiiay! ORE

DDR3L
LPDDRZ ot
LPDDR3 9

MIPI
psi/csi/ B
HSI 8
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DPSNN on Tegra K1

* Tegra K1 integrates an ARM

® ®_
Cortex-A15 embedded ARM® Cortex®-A15
quad'CO re processor ARM CoreSight™ Multicore Debug and Trace
— Troubleless recompilation
of simulator sources and of ARMv7 32b CPU ata Engine

libraries (e.g. Open MP! Vireual 400 PA -':'°at"’g.'°°“‘t
1.10.2) =T

32k I-Cache | 32k D-Cache | Zioli=
— Robust software stack wiparity W/ECC 1

(ubuntu-derived Linux

distribution, LTE R21.4, { scu L2 Cache W/ECC

kernel 3.10.40) '
-bit AMBA® ACE Coherent Bus Interface
. ..and a GK20a GPU (192 B o S

cuda cores)
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The server platform:
Supermicro SuperServer 6016GT-TF

Dimensions: 1U standard rack
mountable

Motherboard: X8DTG-DF

CPU:Dual Intel Westmere quad-cire
Xeon E5620

DRAM: 48 GB DDR3 1333 MHz

NIC: Mellanox ConnectX VPI IB QDR
OS: CentOS release 6.7, kernel
2.6.32-573.7.1.el6.x86_64

25-02-2016 Alessandro Lonardo - INFN Roma APE Lab
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Comparison of server and low-power
architectures

Same # of cores, “Same clock frequency.

Intel Xeon E5620 supports Hypertheading (ARM Cortex A-15 does
not).
SIMD Floating Point Theoretical Peak Performance ( 2x in DP)

— ARM Cortex-A15 (NEON):

» 2 DP FLOPs/cycle: scalar FMA or scalar multiply-add

* 8 SP FLOPs/cycle: 4-wide NEONv2 FMA or 4-wide NEON multiply-add
— Intel Westmere (SSE4.2):

* 4 DP FLOPs/cycle: 2-wide SSE2 addition + 2-wide SSE2 multiplication
» 8 SP FLOPs/cycle: 4-wide SSE addition + 4-wide SSE multiplication

Memory Bandwidth: 14.9 GB/s (ARM Cortex-A15) vs 25.6 GB/s
(Intel Xeon E5620)

— DPSNN makes an intensive use of memory (e.g. for delivering spikes to
post-synaptic neuron queues).



Benchmark Configuration

* DPSNN:
— Simulation time: 3 s
— 2500 LIFCA neurons per cortical column
— 2x2 cortical columns (10K neurons)
— 18M synapses

* Low-power platform:
— 2 Jetson TK1 + Gigabit switch
— 8 MPI processes

e Server platform:

— 1 Supermicro SuperServer 6016GT-TF (2 Intel E5620 quad-
core processors)

— 16 MPI processes (hyperthreading)



Results (1)

Time To Solution [s]

35,00
30,00
25,00
20,00
15,00 ’ Time To Solution [s]
10,00

5,00

0,00
Xeon E5620@2.4GHz Tegra k1

Server platform 3.3 times better than low-power platform
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Results (2)

Power Consumption [W]

300,00

250,00

200,00

150,00 -
B Power Consumption [W]

100,00 -

50,00 -

0,00 -
Xeon E5620@2.4GHz Tegra k1

Server platform 14.4 times worse than low-power platform
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Results (3)

Energy To Solution [J]

2500,00

2000,00

1500,00
1000,00 - M Energy To Solution [J]
500,00

0,00
Xeon E5620@2.4GHz Tegra k1

Server platform is 4.4x worse than low-power platform
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Results (4)

12,00
10,00

8,00

6,00

o -

4,00
2,00

0,00

Joule per synaptic event (ulJ/syn.

Event)

Xeon E5620@2.4GHz

Tegra k1

i Joule per synaptic event
(ul/syn. Event)

Again, server platform 4.4x worse than low-power platform
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Comments on Results

We did not subtract any base-line power consumption.

If we did it, server and low-power platforms power

consumption would have been reduced approx. by a
factor 4 and 3 respectively.

Nevertheless the base-line power consumption woud
still be there! (unless you design your own platform).
Largely outperformed by dedicated platforms:

— SpiNNaker (specialized multi-core ARM): 20 nl/syn. evt.
— TrueNorth (ASIC): 26 pl/syn. evt.

— Human brain: 1-10 fJ/syn. evt. range.



(limited) Scaling study of DPSNN on Jetson TK1

Simulation time: 3 s.
1240 LIFCA neurons per cortical column.

2x2 cortical columns (4960 neurons, 5.4M synapses) on
a single Jetson TK1 (4 MPI processes).

4x2 cortical columns (9920 neurons, 11.2M synapses)
on two Jetson TK1 (4 MPI processes on each board).

4x4 cortical columns (19840 neurons, 23.6M synapses)
on two Jetson TK1 (8 MPI processes on each board).

Run both with “automatic” and “manual” cpu
frequency scaling governor (interactive and userspace).



Results: Time to Solution

140,00
120,00
100,00
80,00
60,00 =&==Governor Userspace
={=Governor Interactive
40,00
20,00
0,00
2x2 Cols, 4960 4x2 Cols, 9920 4x4 Cols, 19840

Neurons, NP=4,1 Neurons, NP=8, 2 Neurons, NP=16, 2
Node Nodes Nodes

No significant reduction fixing Cortex-A15 cores frequency to max (2320.5 MHz).
Automatic cpu frequency scaling works well on the platform.
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Automatic cpu frequency scaling can reduce power consumption of 10-15%.

25-02-2016

Results: Power Consumption

12,00
10,00

8,00 ‘\‘/

6,00

=& Governor Interactive

4,00 = Governor Userspace

2,00

0,00

2x2 Cols, 4960 4x2 Cols, 9920  4x4 Cols, 19840
Neurons, NP=4, 1 Neurons, NP=8, 2 Neurons, NP=16, 2
Node Nodes Nodes
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Results: Energy to Solution

1200,00

1000,00

800,00

600,00

400,00

200,00

0,00

2x2 Cols, 4960

Node

4x2 Cols, 9920

Nodes

4x4 Cols, 19840

Neurons, NP=4, 1 Neurons, NP=8, 2 Neurons, NP=16, 2

Nodes

=—&—Governor Userspace

== Governor Interactive
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Results: Energy per Synaptic Event

4,50E+00

4,00E+00

3,50E+00

3,00E+00

2,50E+00

2,00E+00

1,50E+00

1,00E+00

5,00E-01

0,00E+00

/"

A

— o

=&=—Governor Userspace

== Governor Interactive

2x2 Cols, 4960 4x2 Cols, 9920  4x4 Cols, 19840
Neurons, NP=4, 1 Neurons, NP=8, 2 Neurons, NP=16, 2
Node Nodes Nodes
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What about GK20a GPU?

e Offloading DPSNN computational tasks to GK20A

— Random generation (cuRAND): ~10% speedup compared to
Cortex-A15 only.

— Working on neuron dynamic on GPU.

e (Caveats:

— Need to set GK20a core and memory clocks to max allowed
values in order to measure a speedup (automatic frequency
scaling does not perform so well on GK20a).

— Double precision peak perf 1/24 of single precision

— Limited memory bandwidth make diffucult to reach nominal
peak perf figures.

— No cache coherency between Cortex-A15 and GK20a.

— Need to try different strategies to move data between CPU and
GPU (explicit copies, managed, zero copy).



Conclusions & Future Work

e ARM Cortex-Al1l5, nomen omen?

— Very interesting Energy/Syn. Evt. figures compared
with those obtained on an Intel Westmere server
processor (no modifications on source code).

— Good weak scaling from 1 to 2 nodes.

— Mature software stack to deploy a parallel application
like DPSNN.

e Future work:

— Perform scaling study on a more consistent number of
nodes.

— Repeat measures on new processor generations: e.g.
Intel Skylake vs ARM Cortex-A57.



Thanks for your attention



