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CorAcal	Areas	and	Columns	

3	

Cor&cal	Area:	A	segment	of	
the	cerebral	cortex	that	carries	
out	a	given	funcAon	

Cor&cal	Column:	a	group	of	neurons	
in	the	cortex	that	can	be	successively	
penetrated	by	a	probe	inserted	
perpendicularly	to	the	corAcal	
surface.	

Columns	are	subdivided	in	5/6	
specialized	layers.	
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Intra	and	Inter-areal	connecAons	

4	

!  V.	Braitenberg.“grey	substance	and	white	substance”		Brain	2007	

	White	MaPer	
Long	Range	Inter-areal	CommunicaAon	

Grey	MaPer	
Neurons	+	Intra-areal	connecAons	

Short	range	communicaAon	

!  K.	Brodmann		"Vergleichende	Lokalisa9onslehre	der	
Grosshirnrinde"		1909	Leipzig:	Johann	Ambrosius	Barth	

Cor&cal	Areas	
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A	Challenging	Problem	

•  The	simula&on	of	the	cor&cal	areas	acAvity	can	be	accelerated	
using	parallel/distributed	many-processor	compuAng	systems.		
However,	there	are	several	challenges,	including:	
–  Neural	networks	heavily	interconnected	at	mulAple	distances,	local	

acAvity	rapidly	produces	effects	at	all	distances	"		
Prototype	of	non-trivial	parallelizaAon	problem	

–  Each	neural	spike	originates	a	cascade	of		synapAc	events	at	mulAple	
Ames:	t	+	Δts	"	Complex	data	structures	and	synchronizaAon.	Mixed	
Ame-driven	(delivery	of	spiking	message)	and	event-driven	(neural	
dynamic	and	synapAc	acAvity)		

–  MulAple	Ame-scales	(neural,	synapAc,	long	and	short	term	plasAcity	
models)	"	Non-trivial	synchronizaAon	at	all	scales	

–  GiganAc	synapAc	data-base.	A	key	issue	for	large	scale	simulaAons	"	
Clever	parallel	resource	management	required.	
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Neuron	Models	
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Neural	Spiking	Model:	the	Izhikevich	neuron	

v(t)	is	the	neural	membrane	
potenAal;	this	is	the	key	
observable!	–	when	v		reaches	
vpeak,	a	neural	spike	is	produced	→	

I(t)	is	the	potenAal	change	generated	by	the	
sum	of	the	currents	from	all	synapses	incoming	
to	the	neuron.	It	is	a	‘forcing	funcAon’:	incoming	
currents	are	present	if	spikes	arrived	form	pre-
synap&c	neurons.	

u(t)	is	an	auxiliary	variable	(the	
recovery	current	bringing	back	v	to	
equilibrium);	

The	dynamical	variables	of	the	
single	neuron	are	v(t)	and	u(t):	

→	when	a	neuron	spikes,	all	its	M	outgoing	
synapses	add	a	current	Wi	to	neurons	they	are	
connected	to,	with	a	set	of	different	delays	ti	
(polychronicity).	

t=	t0	

A	

B

D

C
I(t0	+	t1)=...	+W1+...	

I(t0	+	tM)=...	+WM+...	

I(t0	+	t2)=...	+W2+...		

1
2

M

W1	

W2	
WM	
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Izhikevich	Neuron	Model	

Summary	of	the	neuro-
computaAonal	properAes	of	
biological	spiking	neurons.	
The	same	model,	(Izhikevich	
(2003)	with	different	values	
of	parameters,	reproduces	in	
these	pictures	fundamental	
computaAons	performed	by	
several	types	of	corAcal	
neurons.		
Each	horizontal	bar	
corresponds	to	20	ms.		

9	

Eugene M. Izhikevich – IEEE Trans. Neural Networks 
15-5 (2004) pag. 1063-1070 
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Spike-Timing	Dependent	PlasAcity	
Long Term Potentiation and Depression 

- LTP: the synapse weight is maximally 
potentiated if the pre-synaptic spike 
arrives to the target just before the post-
synaptic spike 

- LTD: the synapse weight is maximally 
depressed if the pre-synaptic spike 
arrives to the target just after the post-
synaptic spike 

S. Song et al., Nature Neuroscience 3 (2000) 

STDP depends	on	the	relaAve	Aming	of	pre-	and	postsynapAc	acAon	potenAals.	It	is	an	
evoluAon	of	the	Hebbian	learning	rule	that	captures	also	causality	and	anA-causality	
relaAons.	It	adds	the	compeAAveness	to	the	classical	associaAve	Hebbian	learning	rule. 
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LIFCA	Neuron	Model	
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b)	Grid	of	4	MPI	processes:		
16	columns	per	process		

DistribuAon	of	CorAcal	Modules	among	MPI	
Processes	and	SynapAc	ConnecAvity	

12	

A	sample	grid	of	
64=8x8	neural	
columns.	

Excitatory	neurons	
projects	76%	of	their	
synapses	toward	
neurons	located	in	the	
same	column,	3%	to	
first	neighbouring	
columns,	2%	to	second	
neighbours	and	1%	to	
third	neighbour.	

a)	Grid	of	64	processes:	1	column	per	
MPI	process		

c)	Grid	of	256	processes:	¼	of	column	
per	MPI	process		

One	core	can	host	
one	or	more	MPI	
processes.	
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Example	of	SimulaAon	of		
Spiking	AcAvity	and	SynapAc	PlasAcity	

■  The	picture	represents	the	
evoluAon	of	a	single	CorAcal	
Module	computed	by	the	DPSNN-
STDP	code	

■  In	this	example,	CorAcal	Module:	
!  200	inhibitory	neurons	
!  800	excitatory	neurons	
!  Time	resoluAon:	1ms	

(horizontal	axis)	
!  Each	dot	in	the	rastergram		

represents	an	individual	spike		
!  The	evoluAon	of	the	

membrane	potenAal	of	each	
neuron	is	simulated	
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Emergent	Biological	Behaviour:	Spontaneous	
EvoluAon	of	Rythmic	AcAvity	

As	synapAc	weights	evolve	according	to	STDP	(synapAc	spike-Aming	dependent	
plasAcity,	iniAal	delta	frequency	oscillaAons	(2-4	Hz	@	first	second	acAvity)	dissolves	
for	a	while	into	uncorrelated	Poissonian	acAvity	(acAvity	@	100	seconds)	and	then	
gamma	frequency	acAvity	emerges	(30-100	HZ	@	3600	seconds)		
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SimulaAon	of	CorAcal	Area	AcAvity	
SimulaAon	of	40x40	corAcal	columns,	each	column	composed	of	2500	
neurons,	each	neuron	projecAng	~1600	synapses,	for	a	total	of	4M	neurons	
and	~6G	synapses.		
The	colour	of	each	dot	represents	the	mean	firing	rate	of	a	corAcal	column.	
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Giga	synapses	configura&on	now	run	in	a	few	
hours	
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DPSNN	
Strong	and	Weak	Scaling	

Weak	scaling	for	various	local	network	
sizes.	Exec	Ame	normalized	to	synapse	
count.	

17	

Strong	scaling.	From	1	to	1024	cores	(INTEL	Xeon	Haswell	E5-2630	v3	8-cores	@	2.4	GHz)	
simulate	various	total	network	sizes	(from	0.9	to	14.2	Giga	synapses).	
	Exec	Ame	normalized	to	synapAc	events.	
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DPSNN	on	low-power	compuAng	architectures	

•  Evaluate	the	performaces	of	low-power	
processors	in	scalable	simulaAons	of	spiking	
neural	network	models.	

•  Compare	performances	against	tradiAonal	
server-platorm	processors.	

•  Try	to	idenAfy	the	criAcal	architectural	
features	enabling	beuer	Ame-to-soluAon	and	
energy-to-soluAon	figures	on	this	applicaAon.		
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The	low-power	platorm:	nVIDIA	Jetson	TK1	

Dimensions:	5"	x	5"	(127mm	x	
127mm)		
Tegra	K1	SOC	(CPU+GPU+ISP	in	a	
single	chip)	
GPU:	NVIDIA	Kepler	"GK20a"	GPU	
with	192	SM3.2	CUDA	cores	(up	to	
326	GFLOPS	in	single	precision)	
CPU:	NVIDIA	"4-Plus-1"	2.32GHz	
ARM	quad-core	Cortex-A15	CPU	
with	Cortex-A15	bauery-saving	
shadow-core	
DRAM:	2GB	DDR3L	933MHz	EMC	
x16	using	64-bit	data	width	
Storage:	16GB	fast	eMMC	4.51	
Ethernet:	RTL8111GS	Realtek	
10/100/1000Base-T	Gigabit	LAN	
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DPSNN	on	Tegra	K1	

•  Tegra	K1	integrates	an	ARM	
Cortex-A15	embedded	
quad-core	processor	
–  Troubleless	recompilaAon	

of	simulator	sources	and	of	
libraries	(e.g.	Open	MPI	
1.10.2)	

–  Robust	soxware	stack	
(ubuntu-derived	Linux	
distribuAon,	LTE	R21.4,	
kernel	3.10.40	)		

•  …and	a	GK20a	GPU	(192	
cuda	cores)	
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The	server	platorm:		
Supermicro	SuperServer	6016GT-TF	

Dimensions:	1U	standard	rack	
mountable	
Motherboard:	X8DTG-DF	
CPU:Dual	Intel	Westmere	quad-cire	
Xeon	E5620	
DRAM:	48	GB	DDR3	1333	MHz	
NIC:	Mellanox	ConnectX	VPI	IB	QDR		
OS:	CentOS	release	6.7,	kernel		
2.6.32-573.7.1.el6.x86_64	
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Comparison	of	server	and	low-power	
architectures	

•  Same	#	of	cores,	~Same	clock	frequency.	
•  Intel	Xeon	E5620	supports	Hypertheading	(ARM	Cortex	A-15	does	

not).	
•  SIMD	FloaAng	Point	TheoreAcal	Peak	Performance	(	2x	in	DP)	

–  ARM	Cortex-A15	(NEON):	
•  2	DP	FLOPs/cycle:	scalar	FMA	or	scalar	mulAply-add	
•  8	SP	FLOPs/cycle:	4-wide	NEONv2	FMA	or	4-wide	NEON	mulAply-add	

–  Intel	Westmere	(SSE4.2):	
•  4	DP	FLOPs/cycle:	2-wide	SSE2	addiAon	+	2-wide	SSE2	mulAplicaAon	
•  8	SP	FLOPs/cycle:	4-wide	SSE	addiAon	+	4-wide	SSE	mulAplicaAon	

•  Memory	Bandwidth:		14.9	GB/s	(ARM	Cortex-A15)	vs	25.6	GB/s	
(Intel	Xeon	E5620)		
–  DPSNN	makes	an	intensive	use	of	memory	(e.g.	for	delivering	spikes	to	

post-synapAc	neuron	queues).	
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Benchmark	ConfiguraAon		

•  DPSNN:	
–  SimulaAon	Ame:	3	s	
–  2500	LIFCA	neurons	per	corAcal	column	
–  2x2	corAcal	columns	(10K	neurons)		
–  18M	synapses	

•  Low-power	platorm:	
–  2	Jetson	TK1	+	Gigabit	switch	
–  8	MPI	processes	

•  Server	platorm:	
–  1	Supermicro	SuperServer	6016GT-TF	(2	Intel	E5620	quad-
core	processors)	

–  16	MPI	processes	(hyperthreading)	
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Results	(1)	

Server	platorm	3.3	&mes	bePer	than	low-power	platorm	
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Results	(2)	

Server	platorm	14.4	&mes	worse	than	low-power	platorm	
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Results	(3)	

Server	platorm	is	4.4x	worse	than	low-power	platorm	
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Results	(4)	

Again,	server	platorm	4.4x	worse	than	low-power	platorm	
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Comments	on	Results	

•  We	did	not	subtract	any	base-line	power	consumpAon.	
•  If	we	did	it,	server	and	low-power	platorms	power	
consumpAon	would	have	been	reduced	approx.	by	a	
factor	4	and	3	respecAvely.	

•  Nevertheless	the	base-line	power	consumpAon	woud	
sAll	be	there!	(unless	you	design	your	own	platorm).		

•  Largely	outperformed	by	dedicated	platorms:	
–  SpiNNaker	(specialized	mulA-core	ARM):	20	nJ/syn.	evt.	
–  TrueNorth	(ASIC):	26	pJ/syn.	evt.	
–  Human	brain:	1–10	fJ/syn.	evt.	range.	
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(limited)	Scaling	study	of	DPSNN	on	Jetson	TK1	

•  SimulaAon	Ame:	3	s.	
•  1240	LIFCA	neurons	per	corAcal	column.	
•  2x2	corAcal	columns	(4960	neurons,	5.4M	synapses)	on	
a	single	Jetson	TK1	(4	MPI	processes).	

•  4x2	corAcal	columns	(9920	neurons,	11.2M	synapses)	
on	two	Jetson	TK1	(4	MPI	processes	on	each	board).	

•  	4x4	corAcal	columns	(19840	neurons,	23.6M	synapses)	
on	two	Jetson	TK1	(8	MPI	processes	on	each	board).	

•  Run	both	with	“automaAc”	and	“manual”	cpu	
frequency	scaling	governor	(interacAve	and	userspace).		
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Results:	Time	to	SoluAon	

No	significant	reducAon	fixing	Cortex-A15	cores	frequency	to	max	(2320.5	MHz).	
AutomaAc	cpu	frequency	scaling	works	well	on	the	platorm.	
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Results:	Power	ConsumpAon	

AutomaAc	cpu	frequency	scaling	can	reduce	power	consumpAon	of	10-15%.	
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Results:	Energy	to	SoluAon	
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Results:	Energy	per	SynapAc	Event	
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What	about	GK20a	GPU?	

•  Offloading	DPSNN	computaAonal	tasks	to	GK20A	
–  Random	generaAon	(cuRAND):		~10%	speedup	compared	to	

Cortex-A15	only.	
–  Working	on	neuron	dynamic	on	GPU.	

•  Caveats:	
–  Need	to	set	GK20a	core	and	memory	clocks	to	max	allowed	

values	in	order	to	measure	a	speedup	(automaAc	frequency	
scaling	does	not	perform	so	well	on	GK20a).	

–  	Double	precision	peak	perf	1/24	of	single	precision	
–  Limited	memory	bandwidth	make	diffucult	to	reach	nominal	

peak	perf	figures.	
–  No	cache	coherency	between	Cortex-A15	and	GK20a.	
–  Need	to	try	different	strategies	to	move	data	between	CPU	and	

GPU	(explicit	copies,	managed,	zero	copy).	
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Conclusions	&	Future	Work	

•  ARM	Cortex-A15,	nomen	omen?	
–  Very	interesAng	Energy/Syn.	Evt.	figures	compared	
with	those	obtained	on	an	Intel	Westmere	server	
processor	(no	modificaAons	on	source	code).	

– Good	weak	scaling	from	1	to	2	nodes.		
– Mature	soxware	stack	to	deploy	a	parallel	applicaAon	
like	DPSNN.	

•  Future	work:		
–  Perform	scaling	study	on	a	more	consistent	number	of	
nodes.	

–  Repeat	measures	on	new	processor	generaAons:	e.g.	
Intel	Skylake	vs	ARM	Cortex-A57.		
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Thanks	for	your	auenAon	
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