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Introduction

Energy efficiency is quickly gaining importance in the HPC field

Despite of this, optimization efforts are still mainly committed to minimize
the time-to-solution

On the other side, in other fields such us embedded devices, optimization
efforts are more strongly committed towards minimizing the
energy-to-solution

In this work...
...we explore, for several High-End and Low-Power architectures, the offered
opportunities to tune the energy consumption, highlighting possible tradeoffs
between two metrics: time- and energy-to-solution.
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The D2Q37 Lattice Boltzmann Model

Lattice Boltzmann method (LBM) is a class of computational fluid dynamics
(CFD) methods

LBM methods simulate a discrete Boltzmann equation, which under
certain conditions, reduce to the Navier-Stokes equation

virtual particles called populations arranged at edges of a discrete and
regular grid are used to simulate a synthetic and simplified dynamics

the interaction is implemented by two main functions applied to the virtual
particles: propagation and collision

D2Q37 is a D2 model with 37 components of velocity (populations)

suitable to study behaviour of compressible gas and fluids optionally in
presence of combustion effects

correct treatment of Navier-Stokes, heat transport and perfect-gas
(P = ρT ) equations
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Simulation of the Rayleigh-Taylor (RT) Instability
Instability at the interface of two fluids of different densities triggered by
gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability
that mixes the two fluid-regions (till equilibrium is reached).
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Computational Scheme of LBM
foreach time−step

foreach lattice−point
propagate ( ) ;

endfor

foreach lattice−point
collide ( ) ;

endfor

endfor

Embarassing parallelism
All sites can be processed in parallel applying in sequence propagate and
collide.

Challenge
Design an efficient implementation able exploit a large fraction of available
peak performance.
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D2Q37: propagation scheme

perform accesses to neighbour-cells at distance 1,2, and 3

generate memory-accesses with sparse addressing patterns
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D2Q37 collision

collision is computed at each lattice-cell after computation of boundary
conditions

computational intensive: for the D2Q37 model requires ≈ 7500 DP
floating-point operations

completely local: arithmetic operations require only the populations
associate to the site

computation of propagate and collide kernels are kept separate

after propagate but before collide we may need to perform collective
operations (e.g. divergence of of the velocity field) if we include
computations conbustion effects.
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Initial Code implementations
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Code implementations

E. Calore (INFN and Univ. Ferrara) Energy vs Performance Ferrara, February, 2016 12 / 49



Outline
1 Introduction

2 A Lattice Boltzmann Model as a benchmark

3 Measuring the energy consumption
Hardware power measurements
RAPL and NVML power counters

4 NVIDIA Jetson TK1
C with NEON intrinsics, on the Cortex A15
CUDA on the GK20A

5 96Boards HiKey
C with NEON intrinsics, on the Cortex A53

6 Intel Xeon E5-2630v3 Haswell

7 NVIDIA K80 (half)

8 Conclusions

E. Calore (INFN and Univ. Ferrara) Energy vs Performance Ferrara, February, 2016 13 / 49



Outline
1 Introduction

2 A Lattice Boltzmann Model as a benchmark

3 Measuring the energy consumption
Hardware power measurements
RAPL and NVML power counters

4 NVIDIA Jetson TK1
C with NEON intrinsics, on the Cortex A15
CUDA on the GK20A

5 96Boards HiKey
C with NEON intrinsics, on the Cortex A53

6 Intel Xeon E5-2630v3 Haswell

7 NVIDIA K80 (half)

8 Conclusions

E. Calore (INFN and Univ. Ferrara) Energy vs Performance Ferrara, February, 2016 14 / 49



Setup to sample instantaneous current absorption
One current to voltage converter...
...plus an Arduino UNO (microcontroller + 10-bit ADC + Serial over USB)
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Current to Voltage + Digitization with Arduino + USB Serial
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Acquired data example with default frequency scaling
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Acquired data example using RAPL counters
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NVIDIA Jetson TK1

SoC: Tegra K1

CPU: NVIDIA "4-Plus-1"
2.32GHz ARM quad-core
Cortex-A15, with battery-saving
shadow-core

GPU: NVIDIA Kepler "GK20a"
GPU with 192 SM3.2 CUDA
cores

Awarded for the Best Paper
7th Workshop on UnConventional High Performance Computing (UCHPC), Porto 2014
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Propagate changing the G cluster clock

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0  50  100  150  200  250  300  350  400  450

C
u

r
r
e
n

t 
[
m

A
]

Time [ms]

Propagate on Jetson - 128x1024sp - Changing CPU Clock

4-2320500-0-924000.dat
4-2218500-0-924000.dat
4-2116500-0-924000.dat
4-2014500-0-924000.dat
4-1938000-0-924000.dat
4-1836000-0-924000.dat
4-1734000-0-924000.dat
4-1632000-0-924000.dat
4-1530000-0-924000.dat
4-1428000-0-924000.dat
4-1326000-0-924000.dat
4-1224000-0-924000.dat
4-1122000-0-924000.dat
4-1092000-0-924000.dat

4-960000-0-924000.dat
4-828000-0-924000.dat
4-696000-0-924000.dat
4-564000-0-924000.dat
4-312000-0-924000.dat
4-204000-0-924000.dat

E. Calore (INFN and Univ. Ferrara) Energy vs Performance Ferrara, February, 2016 23 / 49



Propagate changing the MEM clock
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Time and Energy to solution (Propagate)
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Time and Energy to solution (Collide)
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Time and Energy to solution (Propagate)
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Time and Energy to solution (Collide)
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Energy to Sol. vs Time to Sol. CPU(top), GPU(bottom)
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96Boards - HiKey

SoC: HiSilicon Kirin 6220
CPU: 8 core ARM Cortex-A53
running at 1.2GHz
(64-bit aarch64)

GPU: ARM Mali 450-MP4 GPU

MEM: 1GB of 800MHz LPDDR3

Awarded for the Best Paper
8th Workshop on UnConventional High
Performance Computing (UCHPC),
Vienna 2015

3D printed case to fit a fan
(Thanks to V. Carassiti and A. Cotta

Ramusino, INFN Ferrara)
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Energy to Solution vs Time to Solution (CPU) SP & DP
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Energy/Time to Solution Propagate SP & DP
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Energy/Time to Solution Collide SP & DP
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Energy/Time to Solution Collide DP
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Energy/Time to Solution Collide DP
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Conclusions
limited but not negligible power optimization is possible by adjusting clocks
on a kernel-by-kernel basis (between ≈ 5 · · · 25%).

baseline power consumption (leakage current + ancillary electronics) is
relevant (in particular for low-power processors ≈ 30%)

options to run the processor at very low frequencies seem almost useless
(at least for the adopted benchmark)

Future works
perform similar measurements on different architectures (such as
ThunderX ARM Processors)

collect data for a fair comparison between architectures for several metrics

investigate software tuning and multi-objective optimization techniques

evaluate communication costs between different processors
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options to run the processor at very low frequencies seem almost useless
(at least for the adopted benchmark)

Future works
perform similar measurements on different architectures (such as
ThunderX ARM Processors)

collect data for a fair comparison between architectures for several metrics

investigate software tuning and multi-objective optimization techniques

evaluate communication costs between different processors
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Thanks for Your attention
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Processor ES [J] per iteration TS [ms] per iteration EDP

NVIDIA GK20A ≈ 0.35 ≈ 50 0.0175
ARM Cortex A15 ≈ 0.75 ≈ 50 0.0375
ARM Cortex A53 ≈ 0.50 ≈ 75 0.0375

Table: Collide Single Precision; lattice: 128x1024
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Energy to Solution vs Time to Solution (CPU A15)
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Energy to Solution vs Time to Solution (GPU GK20A)
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Energy to Solution vs Time to Solution (GPU GK20A)
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