Energy to Solution vs Time to Solution, towards energy-aware HPC applications

E. Calore¹ S. F. Schifano¹ R. Tripiccione¹

¹INFN Ferrara and Università degli Studi di Ferrara, Italy

COLA Workshop

Ferrara - February 25th, 2016

イモトイモト

- 1
- Introduction
- A Lattice Boltzmann Model as a benchmark
- Measuring the energy consumption
 - Hardware power measurements
 - RAPL and NVML power counters
- NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
- NVIDIA K80 (half)
- Conclusions

4 16 16 16 16

Conclusions

4 10 10 10 10

< 6 ×

• Energy efficiency is quickly gaining importance in the HPC field

- Despite of this, optimization efforts are still mainly committed to minimize the time-to-solution
- On the other side, in other fields such us embedded devices, optimization efforts are more strongly committed towards minimizing the energy-to-solution

In this work...

...we explore, for several High-End and Low-Power architectures, the offered opportunities to tune the energy consumption, highlighting possible tradeoffs between two metrics: time- and energy-to-solution.

- Energy efficiency is quickly gaining importance in the HPC field
- Despite of this, optimization efforts are still mainly committed to minimize the time-to-solution
- On the other side, in other fields such us embedded devices, optimization efforts are more strongly committed towards minimizing the energy-to-solution

In this work...

...we explore, for several High-End and Low-Power architectures, the offered opportunities to tune the energy consumption, highlighting possible tradeoffs between two metrics: time- and energy-to-solution.

- Energy efficiency is quickly gaining importance in the HPC field
- Despite of this, optimization efforts are still mainly committed to minimize the time-to-solution
- On the other side, in other fields such us embedded devices, optimization efforts are more strongly committed towards minimizing the energy-to-solution

In this work...

...we explore, for several High-End and Low-Power architectures, the offered opportunities to tune the energy consumption, highlighting possible tradeoffs between two metrics: time- and energy-to-solution.

- Energy efficiency is quickly gaining importance in the HPC field
- Despite of this, optimization efforts are still mainly committed to minimize the time-to-solution
- On the other side, in other fields such us embedded devices, optimization efforts are more strongly committed towards minimizing the energy-to-solution

In this work...

...we explore, for several High-End and Low-Power architectures, the offered opportunities to tune the energy consumption, highlighting possible tradeoffs between two metrics: time- and energy-to-solution.

イロト イポト イヨト イヨト

A Lattice Boltzmann Model as a benchmark

- Measuring the energy consumption
 - Hardware power measurements
 - RAPL and NVML power counters
- NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 5 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
- 7 NVIDIA K80 (half)
- 8 Conclusions

< 6 ×

The D2Q37 Lattice Boltzmann Model

- Lattice Boltzmann method (LBM) is a class of computational fluid dynamics (CFD) methods
- LBM methods simulate a discrete **Boltzmann** equation, which under certain conditions, reduce to the **Navier-Stokes** equation
- virtual particles called populations arranged at edges of a discrete and regular grid are used to simulate a synthetic and simplified dynamics
- the interaction is implemented by two main functions applied to the virtual particles: **propagation** and **collision**
- D2Q37 is a D2 model with 37 components of velocity (populations)
- suitable to study behaviour of compressible gas and fluids optionally in presence of combustion effects
- correct treatment of <u>Navier-Stokes</u>, heat transport and perfect-gas $(P = \rho T)$ equations

イロト 不得 トイヨト イヨト 二日

Simulation of the Rayleigh-Taylor (RT) Instability

Instability at the interface of two fluids of different densities triggered by gravity.

A cold-dense fluid over a less dense and warmer fluid triggers an instability that mixes the two fluid-regions (till equilibrium is reached).

E. Calore (INFN and Univ. Ferrara)

Energy vs Performance

Computational Scheme of LBM

Embarassing parallelism

All sites can be processed in parallel applying in sequence propagate and collide.

Challenge

Design an efficient implementation able exploit a large fraction of available peak performance.

E. Calore (INFN and Univ. Ferrara)

Energy vs Performance

D2Q37: propagation scheme

- perform accesses to neighbour-cells at distance 1,2, and 3
- generate memory-accesses with sparse addressing patterns

D2Q37 collision

- collision is computed at each lattice-cell after computation of boundary conditions
- computational intensive: for the D2Q37 model requires \approx 7500 DP floating-point operations
- completely local: arithmetic operations require only the populations associate to the site

- computation of propagate and collide kernels are kept separate
- after propagate but before collide we may need to perform collective operations (e.g. divergence of of the velocity field) if we include computations conbustion effects.

イロト イポト イヨト イヨト 二日

Initial Code implementations

E. Calore (INFN and Univ. Ferrara)

3

イロト イヨト イヨト イヨト

Code implementations

э

- Introduction
 - A Lattice Boltzmann Model as a benchmark
 - Measuring the energy consumption
 Hardware power measurements
 RAPL and NVML power counters
 - NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 5 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
- 7 NVIDIA K80 (half)
- 8 Conclusions

- 1 Ir
 - Introduction
 - A Lattice Boltzmann Model as a benchmark
 - Measuring the energy consumption
 Hardware power measurements
 RAPL and NVML power counters

NVIDIA Jetson TK1

- C with NEON intrinsics, on the Cortex A15
- CUDA on the GK20A
- 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
 - NVIDIA K80 (half)
 - Conclusions

4 16 16 16 16

Setup to sample instantaneous current absorption

One current to voltage converter...

...plus an Arduino UNO (microcontroller + 10-bit ADC + Serial over USB)

E. Calore (INFN and Univ. Ferrara)

Energy vs Performance

ONICS

Current to Voltage + Digitization with Arduino + USB Serial

E. Calore (INFN and Univ. Ferrara)

Energy vs Performance

Acquired data example with default frequency scaling

Iterations can be counted

This is a D2H transfer

< ロ > < 同 > < 回 > < 回 >

1

Introduction

- A Lattice Boltzmann Model as a benchmark
- Measuring the energy consumption
 Hardware power measurements
 RAPL and NVML power counters
 - NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
 - NVIDIA K80 (half)
 - Conclusions

4 3 > 4 3

Acquired data example using RAPL counters

Intel Haswell CPU energy counters acquired at 100Hz and converted in Watt; acquisition performed with a custom developed wrapper to the PAPI library.

- 2) A Lattice Boltzmann Model as a benchmark
- Measuring the energy consumption
 - Hardware power measurements
 - RAPL and NVML power counters
 - NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15CUDA on the GK20A
- 5 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
- 7 NVIDIA K80 (half)
- 8 Conclusions

4 3 5 4 3 5

NVIDIA Jetson TK1

SoC: Tegra K1

- CPU: NVIDIA "4-Plus-1"
 2.32GHz ARM quad-core
 Cortex-A15, with battery-saving shadow-core
- GPU: NVIDIA Kepler "GK20a" GPU with 192 SM3.2 CUDA cores

イロト イポト イヨト イヨト

Awarded for the Best Paper

7th Workshop on UnConventional High Performance Computing (UCHPC), Porto 2014

NVIDIA Jetson TK1

SoC: Tegra K1

- CPU: NVIDIA "4-Plus-1"
 2.32GHz ARM quad-core
 Cortex-A15, with battery-saving shadow-core
- GPU: NVIDIA Kepler "GK20a" GPU with 192 SM3.2 CUDA cores

< ロ > < 同 > < 回 > < 回 >

Awarded for the Best Paper

7th Workshop on UnConventional High Performance Computing (UCHPC), Porto 2014

Introduction

A Lattice Boltzmann Model as a benchmark

- Measuring the energy consumption
 - Hardware power measurements
 - RAPL and NVML power counters
- NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
 - NVIDIA K80 (half)
 - Conclusions

4 3 > 4 3

Propagate changing the G cluster clock

< ロ > < 同 > < 回 > < 回

Propagate changing the MEM clock

< ロ > < 同 > < 回 > < 回

Time and Energy to solution (Propagate)

3 > 4 3

Time and Energy to solution (Collide)

Introduction

A Lattice Boltzmann Model as a benchmark

- Measuring the energy consumption
 - Hardware power measurements
 - RAPL and NVML power counters
- NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
- NVIDIA K80 (half)
- Conclusions

Time and Energy to solution (Propagate)

Time and Energy to solution (Collide)

Energy to Sol. vs Time to Sol. CPU(top), GPU(bottom)

96Boards - HiKey

SoC: HiSilicon Kirin 6220

- CPU: 8 core ARM Cortex-A53 running at 1.2GHz (64-bit aarch64)
- GPU: ARM Mali 450-MP4 GPU
- MEM: 1GB of 800MHz LPDDR3

Awarded for the Best Paper

8th Workshop on UnConventional High Performance Computing (UCHPC), Vienna 2015

3D printed case to fit a fan (Thanks to V. Carassiti and A. Cotta Ramusino, INFN Ferrara)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

96Boards - HiKey

SoC: HiSilicon Kirin 6220

- CPU: 8 core ARM Cortex-A53 running at 1.2GHz (64-bit aarch64)
- GPU: ARM Mali 450-MP4 GPU
- MEM: 1GB of 800MHz LPDDR3

Awarded for the Best Paper

8th Workshop on UnConventional High Performance Computing (UCHPC), Vienna 2015

3D printed case to fit a fan (Thanks to V. Carassiti and A. Cotta Ramusino, INFN Ferrara)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

96Boards - HiKey

SoC: HiSilicon Kirin 6220

- CPU: 8 core ARM Cortex-A53 running at 1.2GHz (64-bit aarch64)
- GPU: ARM Mali 450-MP4 GPU
- MEM: 1GB of 800MHz LPDDR3

Awarded for the Best Paper

8th Workshop on UnConventional High Performance Computing (UCHPC), Vienna 2015

3D printed case to fit a fan (Thanks to V. Carassiti and A. Cotta Ramusino, INFN Ferrara)

イロト イポト イヨト イヨト

1 Intro

Introduction

- A Lattice Boltzmann Model as a benchmark
- Measuring the energy consumption
 - Hardware power measurements
 - RAPL and NVML power counters
- NVIDIA Jetson TK1
 - C with NEON intrinsics, on the Cortex A15
 - CUDA on the GK20A
- 96Boards HiKey
 - C with NEON intrinsics, on the Cortex A53
- Intel Xeon E5-2630v3 Haswell
- NVIDIA K80 (half)
- Conclusions

(3)

Energy to Solution vs Time to Solution (CPU) SP & DP

イロト イポト イヨト イヨト

Energy/Time to Solution Propagate SP & DP

Energy/Time to Solution Collide SP & DP

Scatter Plot

Energy/Time to Solution Propagate DP

< ロ > < 同 > < 回 > < 回

Energy/Time to Solution Collide DP

< □ > < 同 > < 回 > < 回 > < 回

Energy/Time to Solution Propagate DP

Energy/Time to Solution Collide DP

< ロ > < 同 > < 回 > < 回 >

Hardware power measurements ۲ RAPL and NVML power counters C with NEON intrinsics, on the Cortex A15 CUDA on the GK20A C with NEON intrinsics, on the Cortex A53 Conclusions - **A** 4 3 5 4 3 5

Conclusions

- Iimited but not negligible power optimization is possible by adjusting clocks on a kernel-by-kernel basis (between ≈ 5 · · · 25%).
- baseline power consumption (leakage current + ancillary electronics) is relevant (in particular for low-power processors $\approx 30\%$)
- options to run the processor at very low frequencies seem almost useless (at least for the adopted benchmark)

Future works

- perform similar measurements on different architectures (such as ThunderX ARM Processors)
- collect data for a fair comparison between architectures for several metrics
- investigate software tuning and multi-objective optimization techniques
- evaluate communication costs between different processors

3

イロト 不得 トイヨト イヨト

Conclusions

- limited but not negligible power optimization is possible by adjusting clocks on a kernel-by-kernel basis (between $\approx 5 \cdots 25\%$).
- baseline power consumption (leakage current + ancillary electronics) is relevant (in particular for low-power processors $\approx 30\%$)
- options to run the processor at very low frequencies seem almost useless (at least for the adopted benchmark)

Future works

- perform similar measurements on different architectures (such as ThunderX ARM Processors)
- collect data for a fair comparison between architectures for several metrics
- investigate software tuning and multi-objective optimization techniques
- evaluate communication costs between different processors

イロト 不得 トイヨト イヨト 二日

Thanks for Your attention

2

イロン イロン イヨン イヨン

Processor	E_{S} [J] per iteration	T_S [ms] per iteration	EDP
NVIDIA GK20A ARM Cortex A15	pprox 0.35 pprox 0.75	pprox 50 pprox 50	0.0175 0.0375
ARM Cortex A53	pprox 0.50	pprox 75	0.0375

Table: Collide Single Precision; lattice: 128x1024

э

< 🗇 🕨

Energy to Solution vs Time to Solution (CPU A15)

Energy to Solution vs Time to Solution (GPU GK20A)

Energy to Solution vs Time to Solution (GPU GK20A) zoom

イロト イポト イヨト イヨト