

Experience with Beignet OpenCL on Intel Core M

<u>Felice Pantaleo</u>, Vincenzo Innocente CERN – EP Department UН

iİi

Outline

• Low Power Architectures

two

- Intel Skylake Core M —Test and results
- Beignet OpenCL
 Test and results
- Conclusion

UΗ

Low Power Architectures

- Power consumption is becoming a hot-spot in the total bill
 - Especially true in Europe
- At CERN, this will be even more important with the HL-LHC upgrade
 - LHC experiments will have to cope with 2-3x the amount of data
- Increasing interest in alternative low power architectures based on ARM
- Increasing interest in complementary highly efficient accelerators like GPUs

UH

Intel Skylake Core M

Credits: Intel

- Turbo Boost, Hyperthreading
- AVX2.0
- 4MB of L3 Cache
- Intel HD 515 GPU
- 4.5 W TDP, passively cooled...

UH

ïï

Who needs Lugano Lake?

UН

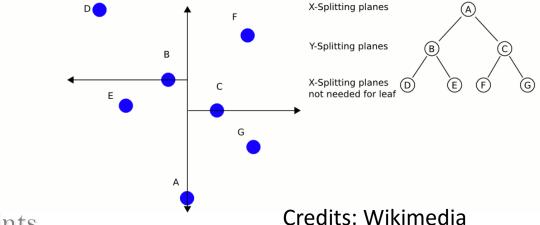
iii

CMS

ÇÉRN

Hardware test configuration

Product Name	Intel® Core™ m3-6Y30 Processor (4M Cache, up to 2.20 GHz)	Intel® Core™ i7-6700K Processor (8M Cache, up to 4.20 GHz)
Code Name	Skylake	Skylake
🛨 Essentials		
- Performance		
# of Cores	2	4
# of Threads	4	8
Processor Base Frequency	900 MHz	4 GHz
Max Turbo Frequency	2.2 GHz	4.2 GHz
► TDP	4.5 W	91 W
Configurable TDP-up	7 W	
Configurable TDP-down	3.8 W	
Memory Specifications		
- Graphics Specifications		
Processor Graphics *	Intel [®] HD Graphics 515	Intel [®] HD Graphics 530
Graphics Base Frequency	300 MHz	350 MHz
Graphics Max Dynamic requency	850 MHz	1.15 GHz
Graphics Video Max Memory	1.7 GB	1.7 GB

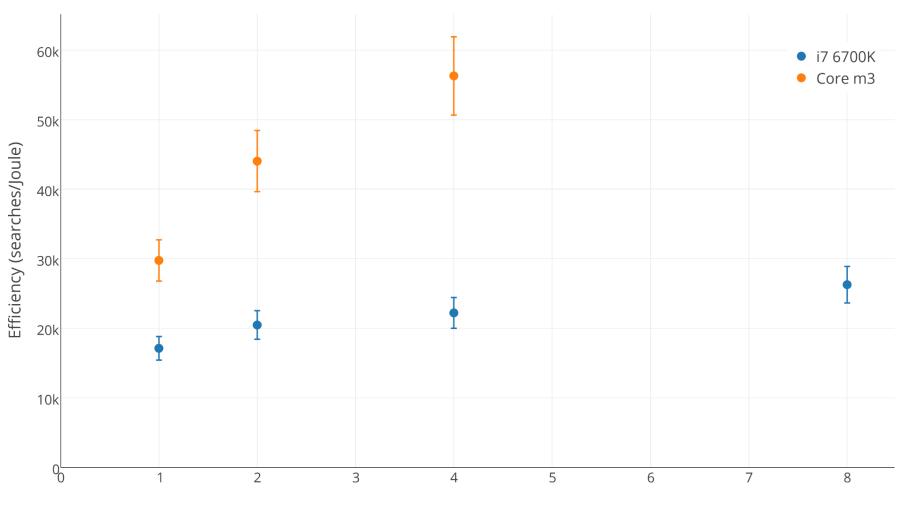

Credits: Intel

υH

iii

FKDTree

- Parallel Heapified KDTree
- Branchless search in TBB, OpenCL, CUDA
- Mainly used for track seeding or clustering (nearest neighbor search)



- Test configuration:
 - 3D Cloud of 500k points
 - Searching for points inside a box around each point
 - Density of points \sim 32 avg points inside each search box

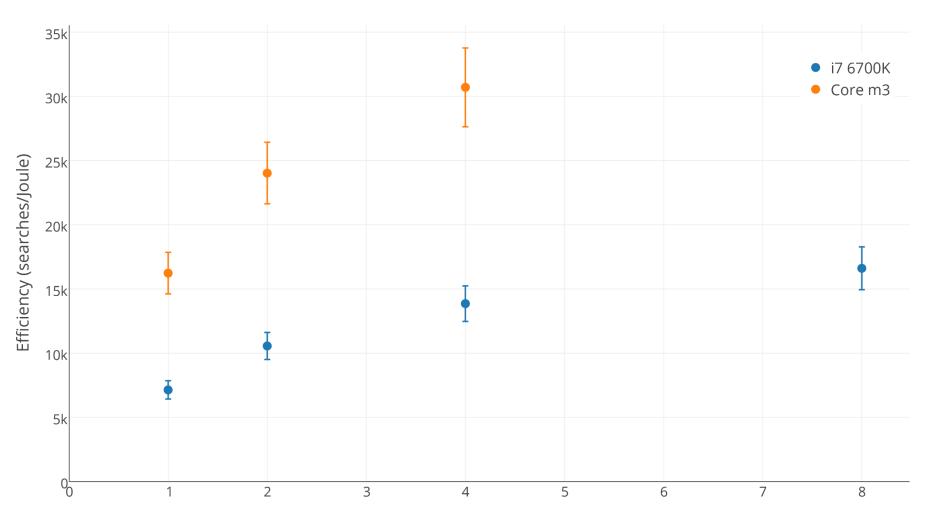
UH

FKDTree results

Efficiency for FKDTree measured by turbostat (500k, 3D, avg 32 points in the search box)

number of threads

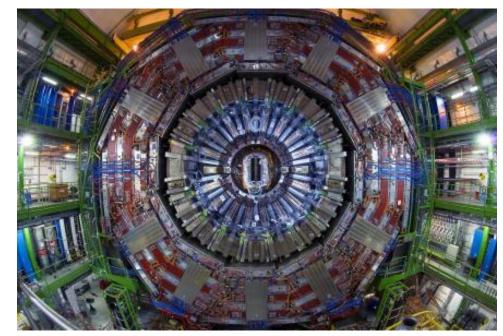
UH


ER

FKDTree results (ctd.) → two t jets + X, 60 fb

H.A

Efficiency for FKDTree measured by power-o-meter (500k, 3D, avg 32 points in the search box)


UΗ

number of threads

ParfullCMS

- Standalone CMS simulation using Geant4 (v10.1) with representative geometry
- Simplified Physics
- Compiled with GCC 4.9.x
 - static binaries and multithreading support.

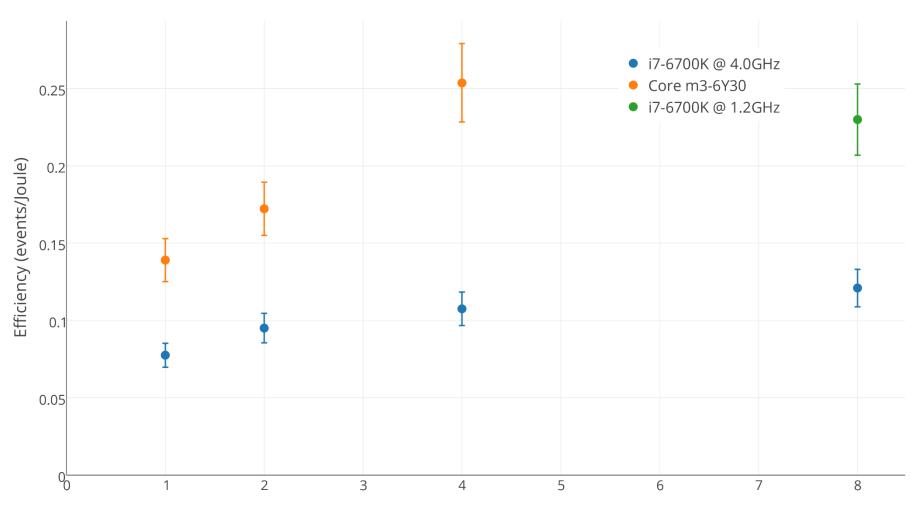


Credits: CDS CERN

UH

ParfullCMS results

Efficiency for ParFullCMS measured by external power-o-meter



UH

CERN

ParfullCMS results

Efficiency for ParfullCMS as measured by turbostat

number of threads

UH

CERN

ParfullCMS results

- ParfullCMS scales with the frequency
- Running the i7 6700K @ 1.2 GHz with 8 threads
 - 2.35 events/second
 - 0.23 events/Joule
- Running the Core m3 with 4 threads
 - 1.2 events/second
 - 0.26 events/Joule
- It looks like they cut the i7 in two, downclocked and downvolted

Credits: Fantasia, Walt Disney

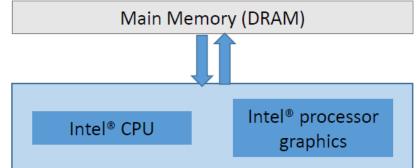
UH

ERN

- Are we actually squeezing all the processing power from the SoC?
- There is still an integrated GPU in the package...

Beignet OpenCL

- Open-source implementation
- 70000+ lines of C and C++
- Distributed under the LGPLv2.1
- Supported GPUs: Intel HD, Iris, Iris Pro
- Supported CPUs: Intel Core, Atom


First installation on Skylake Core m3 (end of 2015) not straightforward:

- Required manual kernel patch now included in 4.3.3+
- libdrm version 2.4.66+
- llvm 3.5

UH

Memory management

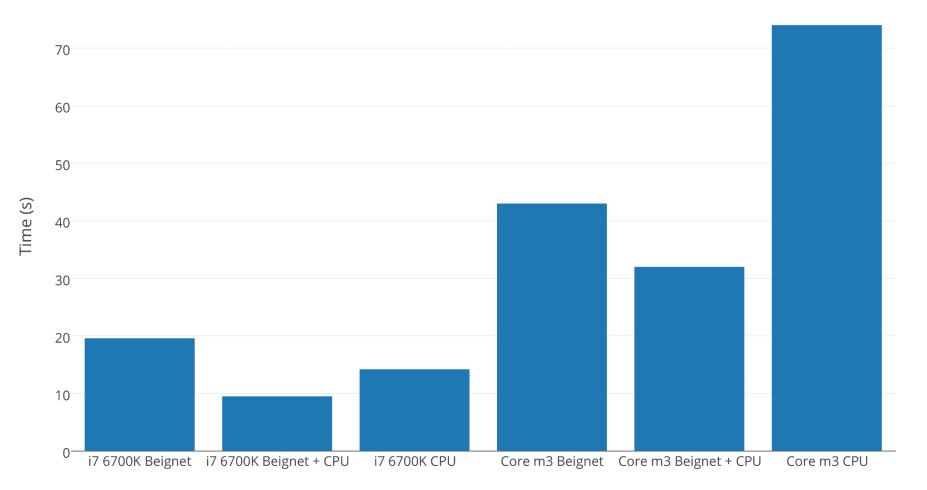
- Applications can inform the driver of their memory usage scenarios
 - during allocation
 - memory transfer API
- Driver implementations create internal copies of memory buffers
 - beneficial for improving caching behavior
 - dramatic impact on performance
 - device-specific knowledge to avoid these copies

UH

Memory management (ctd.)

- Integrated graphics
 - best performance when using zero copy
 - no need to create a host and a device version of data
 - No NUMA effects: memory shared between the CPU and GPU can be efficiently accessed by both devices.

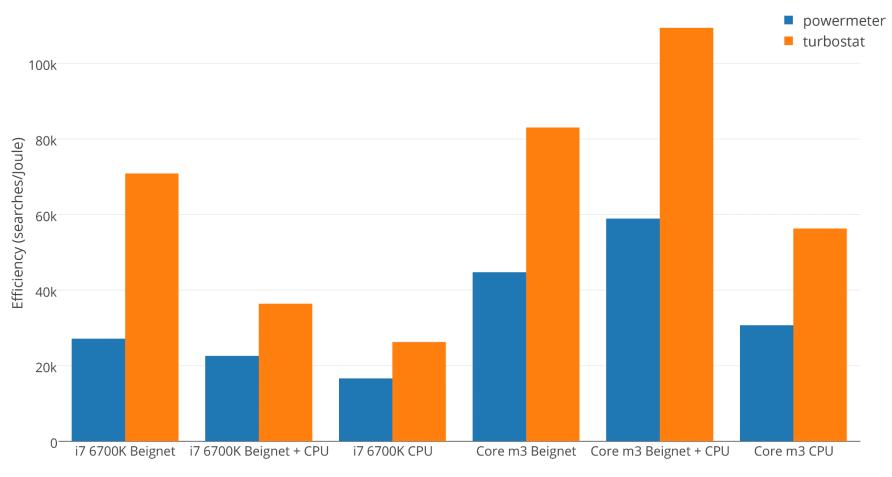
• Adding OpenCL in existing codebase:


- must create a buffer that is aligned to a 4096 byte boundary and have a size
 that is a multiple of 64 bytes
 int *pbuf = (int *)_aligned_malloc(sizeof(int) * 256, 4096);
 cl_mem_myZeroCopyCLMemObj =
 clCreateBuffer(ctx,...CL_MEM_USE_HOST_PTR...);
- OpenCL-managed host allocation

buf = clCreateBuffer(ctx, ...CL_MEM_ALLOC_HOST_PTR, ...)

UH

FKDTree performance


FKDTree Search Performance

UН

FKDTree efficiency

Efficiency for FKDTree (500k, 3D, avg 32 points in the search box)

Configuration

UΗ

Conclusion

- Intel is working hard to fill the gap with ARM and NVIDIA
- Frequency is one of the dominating factors in high throughput computing
 - Higher frequency need improved cooling systems and decrease density
- Compare energy density efficiency? events/(Joule liter)
- Exploiting unused SoC resources now possible and "easy"
- Allows to achieve higher energy efficiency, throughput and latency
- Useful to offload parallel friendly C-kernels
- Still problems getting everything to run on CentOS 7

UH