
# EXPLORATION OF FUTURE COMPUTING PLATFORMS AT CMS

COMPUTING ON LOW-POWER ARCHITECTURES (COLA), 25.02.2016 DAVID ABDURACHMANOV (FERMILAB)

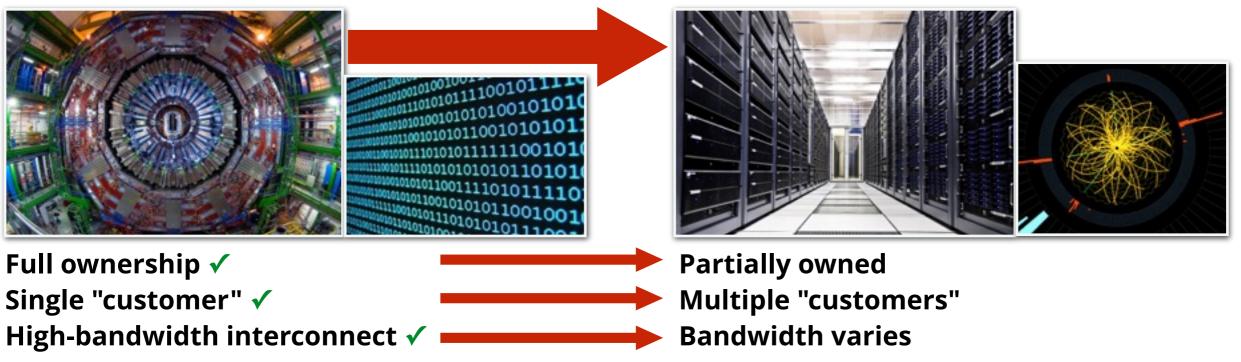




### Power In Data Centers

#### **An Inconvenient Truth**

- Energy-related costs account for approximately 12 percent of overall data center expenditure and are the fastest-rising cost in the data center, according to Gartner, Inc. (September 29, 2010)
- CMS for 2012 data used ~100K x86\_64 cores from ~350K cores at Worldwide LHC Computing Grid (WLCG)
- Scaling up from the mix of machines at FNAL we estimate WLCG aggregate power consumption for machines at 10MW
- CMS expects 2 to 3 orders of magnitude increase in data produced in 15 years


#### Think Green

- Local green or/and cheaper power source, e.g., Princeton energy plant (15MW) combines electricity, heat and cooling. When electricity cost increased gas, diesel or/and bio-diesel fuel is used to power local generators. Hot water and steam is provided from waste energy.
- Low-power and / or highly efficient hardware, e.g., Intel Atom, X-Gene (ARMv8 64-bit), GPUs, Xeon Phi, FPGA, etc.

# Computing & CMS

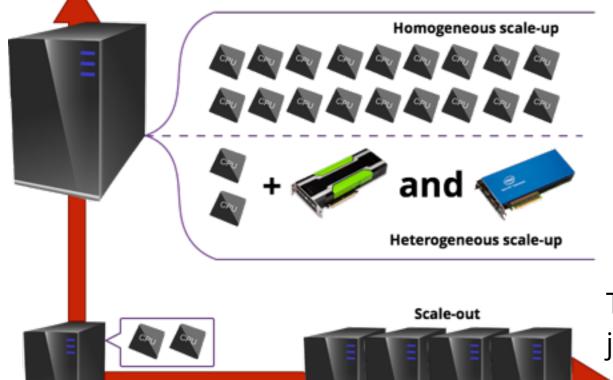
**CMS Detector (HLT)** 

Worldwide LHC Computing Grid (WLCG)



**A virtual super computer** (WLCG) is used to store, distribute and process LHC data

Based on 170 computing centres in 42 countries Distribute and analyse ~30PB of data annually generated by LHC Experiments produce >15PB of new data annually


# Why new architectures?

Distributed computing in HEP before ~2000 had multiple vendors involved, and incl. special workstations and heterogeneous computing Hight Throughput Computing (HTC) converged on x86/Linux at ~2000 Commodity hardware enabled the current model of WLCG:

#### Build Once, Run Everywhere

Two vendors: Intel (dominating) and AMD

The current commodity hardware itself is limited by power wall with stop-gap solutions -- many-core



Specialised processors and heterogeneous computing rise up

Lightweight general-purpose low-power high-density, vector units, GPUs, Xeon Phis (highly-parallel long-vector), etc

The focus is shifting to **performance/watt**, not just **performance/price** 

#### How we do it?

No single job batch submission system, incl. **LSF**, **HTCondor**, Slurm, SGE, Torque/ Pbs

No single storage solution, incl. NFS, GlusterFS, Hadoop (popular in US)

Has 100+ different CPUs from the last **10 years**, most 4-5 years old

Common operating system: RHEL/CentOS/Scientific Linux (SL)

Dominated by SL 6 co-developed by CERN and Fermilab

CentOS 7 + CERN Special Interest Group to follow SL 6

Software and essential precomputed data (e.g. LUT) distributed via **CernVM File System (CVMFS)** 

**HEP SPEC '06** benchmark is used for accounting in WLCG and by experiments

Designed to represent worker node activity under full load

Based on CPU SPEC 2006 all\_cpp benchmark set

#### The actual application software for CMS Software Bundle "pattern recognition", "simulation", etc. **CMS Software Bundle** CMSSW is open-source and available at GitHub **CMSSW** Mostly written in C++14, C, **HEP** Python and Fortran EIGEN HepMC SciPy **ROOT** FFTW ... **CVMFS** Standard CMSSW is like Software Python zlib glibc **OpenSSL** ... **Collection** package or **Linux** Toolchain **Container** without actually being Binutils GDB elfutils LLVM/Clang any of them GCC Quick comparison: OS (RHEL/CentOS/SL) Firefox **CMSSW** Other CERN developed software **SLOCs** 6M 7M would increase SLOCs **Initial Release** 2005 2002 ROOT6 w/o Clang: 1.7M **Contributors** >1300 >1200 **GEANT4:** 1.1M **Memory Footprint** ~0.3GB ~2GB

# Porting to ARMv8 (64-bit)

CMSSW was originally ported to ARMv7 (32-bit) few years ago

High-end mobile SoC based development boards were used

ODROID-U2 (Exynos 4412 Prime), ODROID-XU2 (Exynos 541), Arndale Octa (Exynos 5420), Jetson TK1 (Tegra K1)

Resolved majority of porting issues and found numerous issues in CMSSW (even affecting x86\_64)

CMSSW for ARMv8 (64-bit) port was started early

Step1: ARM Foundation Model

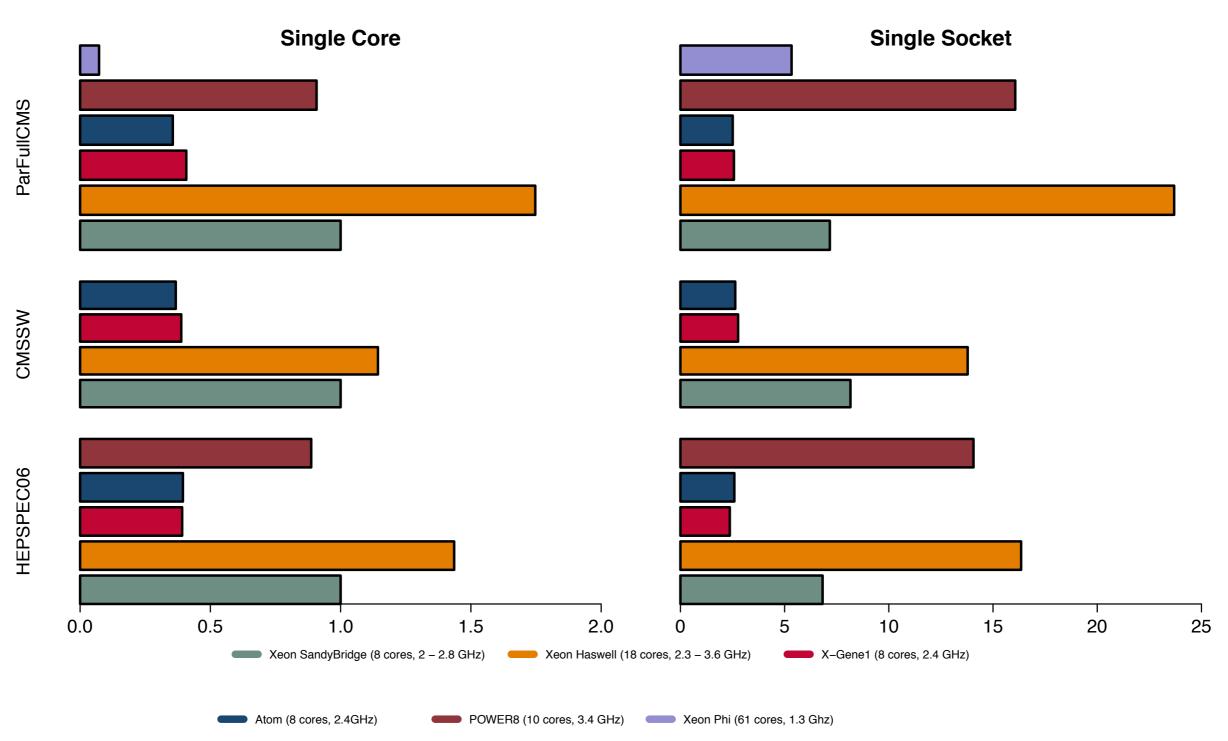
**Step2**: QEMU + binfmt\_misc + user mode emulation

Step3: APM Mustang

**Step4**: HP Moonshot + m400

For ARMv8 we wanted to have CMSSW application software and GRID software (e.g., **HTCondor**) for software distribution, data transfers and job management

#### **CHEP '15**


# CPU Specifications

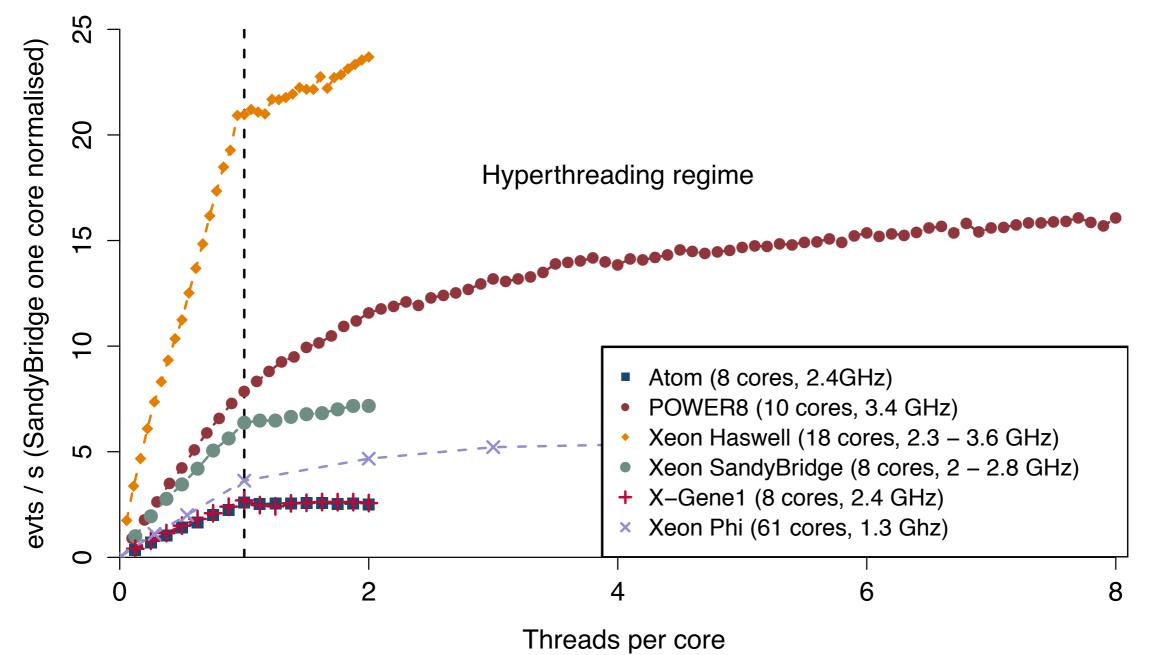
|             | Vendor | Model    | Year    | Fab   | Process |
|-------------|--------|----------|---------|-------|---------|
| SandyBridge | Intel  | E5-2650  | Q1/12   | Intel | 32nm    |
| Haswell     | Intel  | E5-2699  | Q3/14   | Intel | 22nm    |
| Atom        | Intel  | C2750    | Q3/13   | Intel | 22nm    |
| X-Gene 1    | APM    | 883408   | Q3/13   | TSMC  | 40nm    |
| POWER8      | IBM    | 8247-22L | Late 13 | IBM   | 22nm    |
| Xeon Phi    | Intel  | KNC7100  | Q2/14   | Intel | 22nm    |
|             |        |          |         |       |         |

|             | Frequency (GHz) | Cores | Threads/Core |
|-------------|-----------------|-------|--------------|
| SandyBridge | 2.0 (2.8)       | 8     | 2            |
| Haswell     | 2.3 (3.6)       | 18    | 2            |
| Atom        | 2.4             | 8     | 1            |
| X-Gene 1    | 2.4             | 8     | 1            |
| POWER8      | 3.45            | 10    | 8            |
| Xeon Phi    | 1.23            | 61    | 4            |

#### CHEP'15

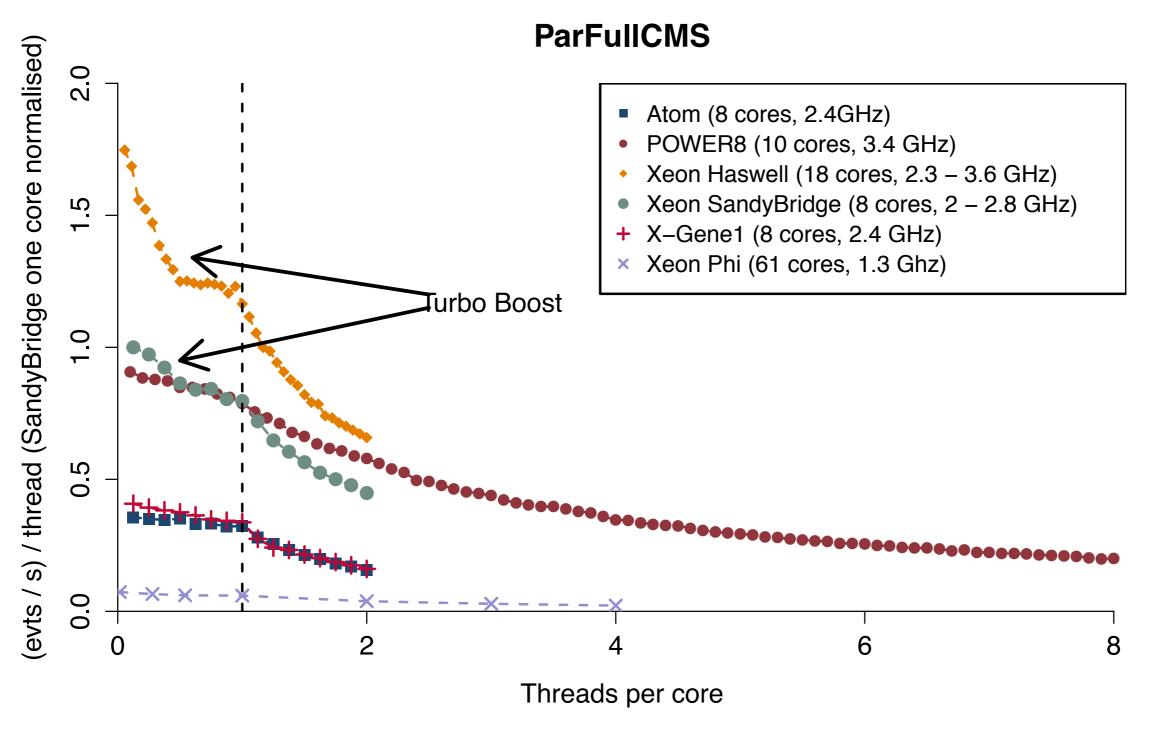
### Raw Performance




All numbers normalised to Xeon SandyBridge 1 core performance.

10

### Scalability #1

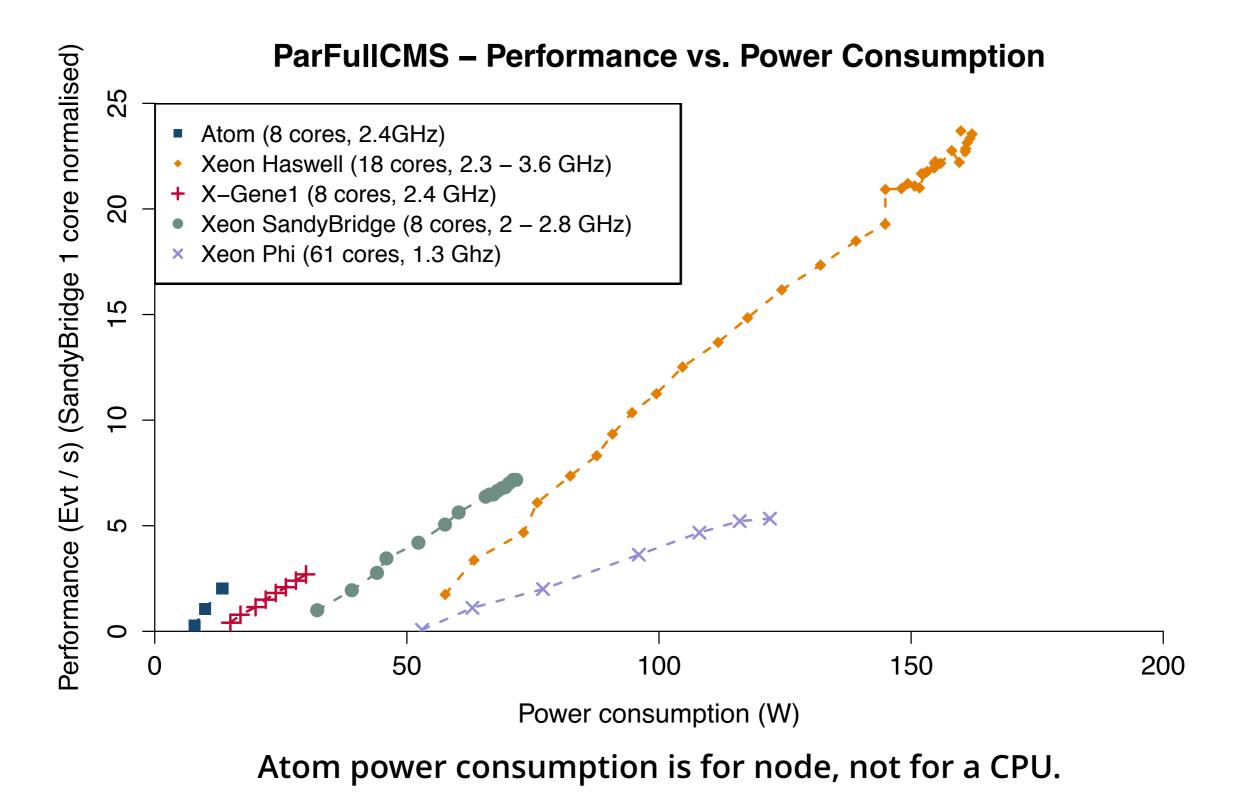

**CHEP '15** 





All numbers normalised to Xeon SandyBridge 1 core performance.

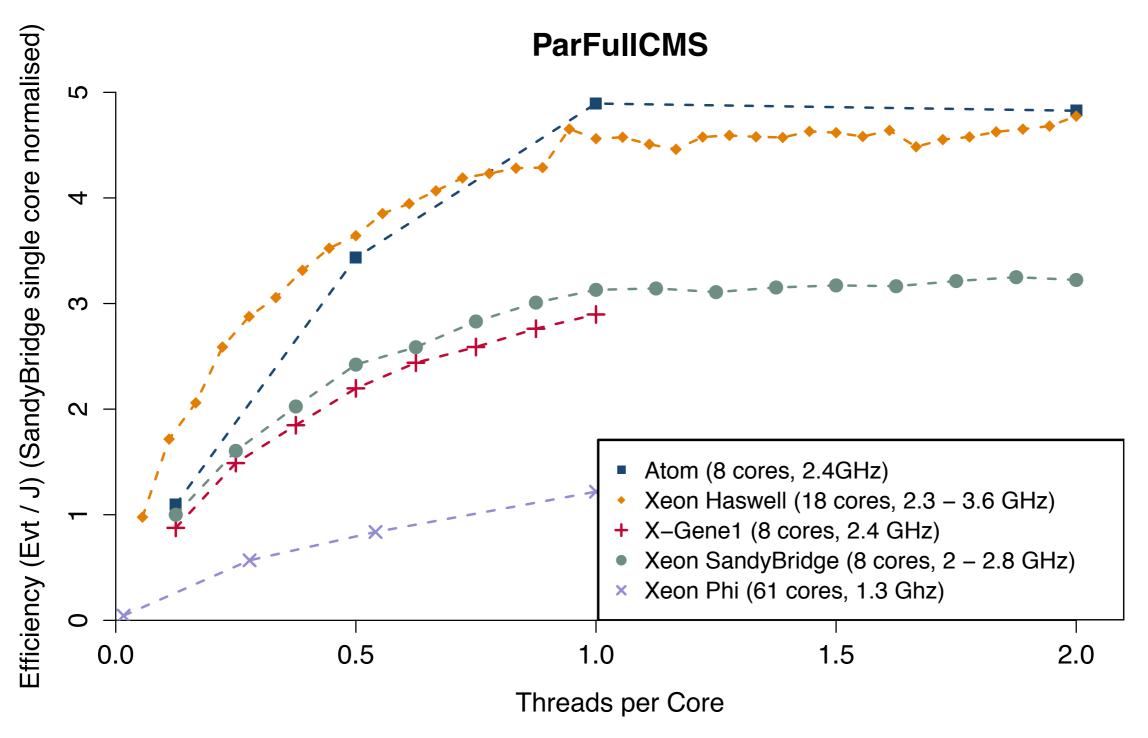
# Scalability #2




All numbers normalised to Xeon SandyBridge 1 core performance.

**CHEP '15** 

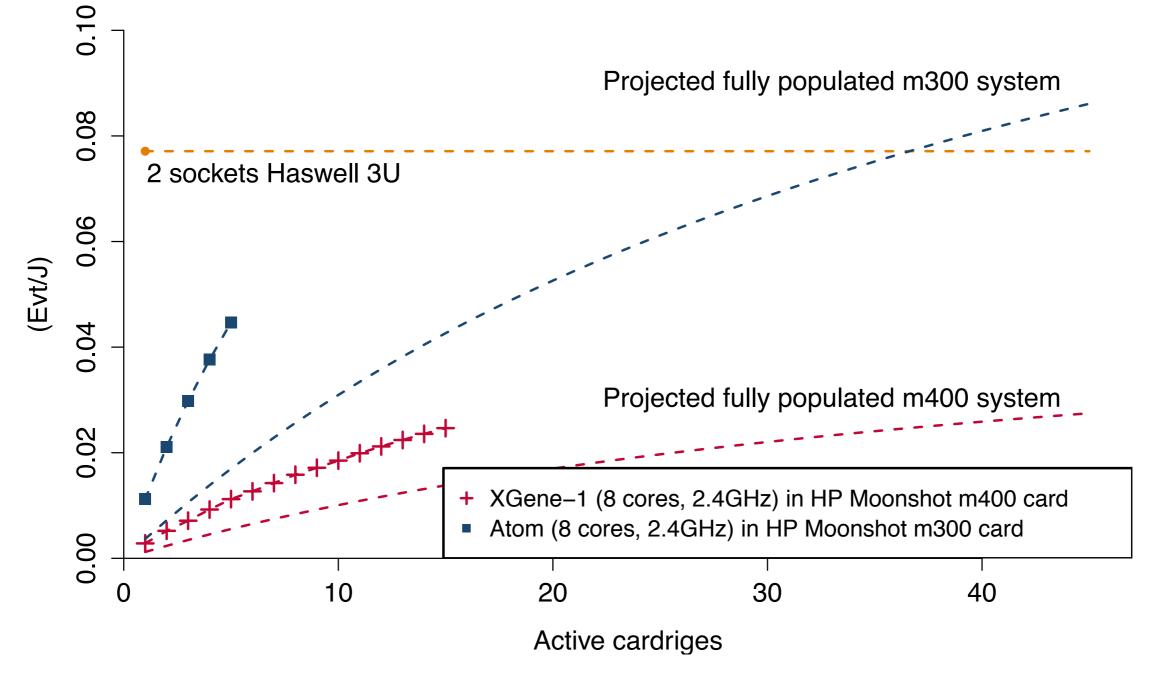



## Power Efficiency (1S) #1



13




# Power Efficiency (1S) #2

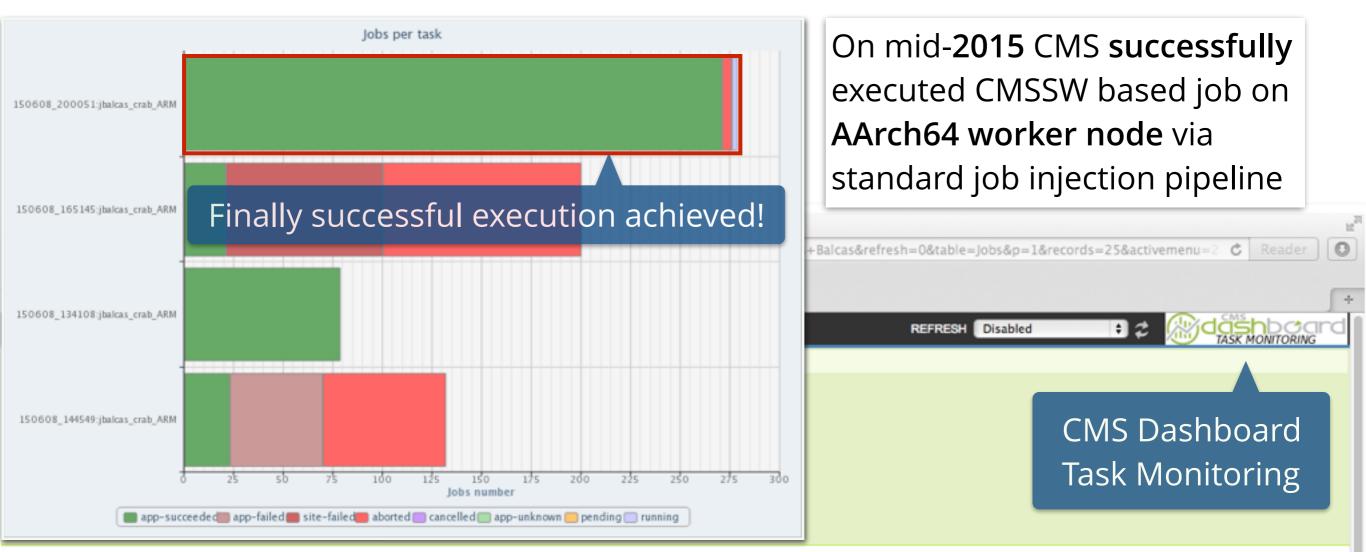


All numbers normalised to Xeon SandyBridge 1 core performance.

# Power Efficiency (box)

#### **ParFullCMS**




**CHEP '15** 

# Heterogeneous Tier-3 Site

**Goal 1:** What is necessary for **AArch64-based** (or any other alternative architecture) production worker nodes to be a credible alternative to **x86\_64-based** nodes for use in **WLCG** computing sites (given the availability of application level software like **CMSSW**)?

**Goal 2:** We wanted to demonstrate that such nodes can be added as a "drop-in" replacement for x86\_64 nodes in WLCG and even mixed heterogeneously.

With above goals in mind, we created **US\_T3\_Princeton\_ARM** computing site using APM Mustang development board with Open Science Grid (OSG) infrastructure at Princeton University.



#### Start » [ Justas Balcas ] » Tasks » Jobs

Data Charts Show 25 \$ entries

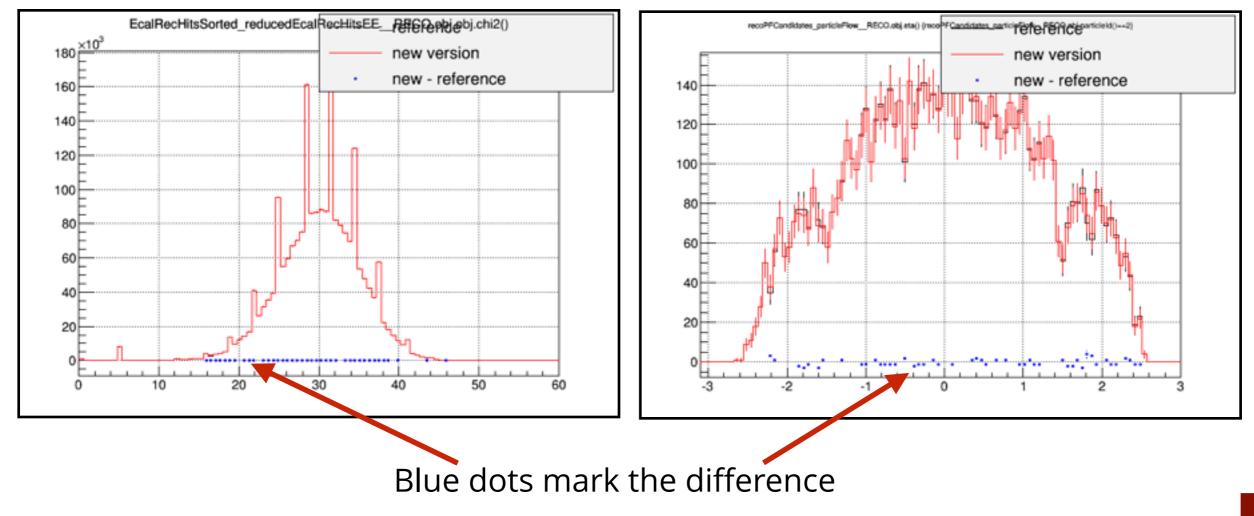
Task: 150608\_200051:jbalcas\_crab\_ARM\_TEST\_2-output2 NJobTotal: 1000 Pending: 822 Running: 0 Unknown: 0 Cancelled: 0 Success: 168 Failed: 2 WNPostProc: 8 ToRetry: 0

|   | ld 🔺 | Status   | \$ | AppExitCode |        | Site        | φ. | Retries | Submitted               | ¢. | Started                 | ¢. | Finished                | ¢. | Wall<br>Time | Job Log 🔶                              | File      | FTS File<br>Status |
|---|------|----------|----|-------------|--------|-------------|----|---------|-------------------------|----|-------------------------|----|-------------------------|----|--------------|----------------------------------------|-----------|--------------------|
| Ŧ | 1    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:05:35 |    | 2015-06-<br>08T20:15:16 |    | 00:09:41     | Job Log,Job Log JSON,Post Job<br>Log   | File Info | N/A                |
| Ŧ | 2    | finished |    | 0           | T3_US_ | Princeton_A | RM | ть      | 2015-06-<br>08T2first   | ٨  | Arch64                  | h  | 2015-06-                |    | 00:09:38     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| ŧ | 3    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 08T20:01:22             |    | 08T20:05:37             |    | 08T20:15:25             |    | 00:09:48     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| ŧ | 4    | finished |    | 0           | T3_US_ | Princeton_A | RM | WL      | .CG site                |    | demons                  | st | rator)                  |    | 00:09:55     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| ŧ | 5    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:05:37 |    | 2015-06-<br>08T20:15:34 |    | 00:09:57     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| ŧ | 6    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:09:29 |    | 2015-06-<br>08T20:16:00 |    | 00:06:31     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| Ð | 7    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:24:29 |    | 2015-06-<br>08T20:28:52 |    | 00:04:23     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| ŧ | 8    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:24:29 |    | 2015-06-<br>08T20:29:03 |    | 00:04:34     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| Ð | 9    | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:24:30 |    | 2015-06-<br>08T20:29:32 |    | 00:05:02     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A                |
| ⊞ | 10   | finished |    | 0           | T3_US_ | Princeton_A | RM | 1       | 2015-06-<br>08T20:01:22 |    | 2015-06-<br>08T20:24:31 |    | 2015-06-<br>08T20:28:10 |    | 00:03:39     | Job Log, Job Log JSON, Post Job<br>Log | File Info | N/A 17             |
| ſ |      |          | _  | _           |        |             |    |         | 2015-06-                |    | 2015-06-                |    | 2015-06-                |    |              | Joh Log Joh Log JSON Post Joh          |           |                    |

| 3            |                                                                                        | 111111111100.0%] 7 [11111111111111111111111111111111111                                                                                                                                        |
|--------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PID          | USER PRI NI VIRT RES SHR S CPU% MEM% TIME+ Command                                     |                                                                                                                                                                                                |
| 6128         | 20 0 2042M 41224 1948 S 0.0 0.3 0:00.16 - /                                            | usr/bin/cvmfs2 -o rw,fsname=cvmfs2,allow_other,grab_mountpoint,uid=997,gid=995 cms.cern.ch /cvmfs/cms.cern.ch                                                                                  |
| 6127         | 20 0 2042M 41224 1948 S 0.0 0.3 0:00.17 🛛 🛏 /                                          | usr/bin/cvmfs2 -o rw,fsname=cvmfs2,allow_other,grab_mountpoint,uid=997,gid=995 cms.cern.ch /cvmfs/cms.cern.ch                                                                                  |
| 6120         | 20 0 2042M 41224 1948 5 0.0 0.3 0:00.18 🛛 🛏 /                                          | usr/bin/cvmfs2 -o rw,fsname=cvmfs2,allow_other,grab_mountpoint,uid=997,gid=995 cms.cern.ch /cvmfs/cms.cern.ch                                                                                  |
| 23248        |                                                                                        | /sbin/condor_master -f                                                                                                                                                                         |
| 23256        |                                                                                        | ondor_startd -f                                                                                                                                                                                |
| 30301        |                                                                                        | - condor_starter -f -a slot4 byggvir.Princeton.EDU                                                                                                                                             |
| 30305        | 30 10 3744 1848 1208 5 0.0 0.0 0:00.62                                                 | <pre>/bin/bash /var/lib/condor/execute/dir_30301/condor_exec.exe -v std -name gfactory_instance -entry CMS_T3_U</pre>                                                                          |
| 2478         | 30 10 3468 1548 1208 5 0.0 0.0 0:00.12                                                 | <pre>bin/bash /var/lib/condor/execute/dir_30301/glide_NRPbun/main/condor_startup.sh glidein_config</pre>                                                                                       |
| 3191         | 30 10 17884 8272 6320 5 0.0 0.1 0:00.16                                                | <pre>/var/lib/condor/execute/dir_30301/glide_NRPbun/main/condor/sbin/condor_master -f -pidfile /var/lib/c</pre>                                                                                |
| 3194         | 30 10 18928 9140 6748 5 0.0 0.1 0:00.87                                                | - condor_startd -f                                                                                                                                                                             |
| 2898         | 30 10 17012 8324 6552 5 0.0 0.1 0:00.16                                                | └── condor_starter -f vocms058.cern.ch                                                                                                                                                         |
| 4428         | 30 10 3352 1456 1196 5 0.0 0.0 0:00.10                                                 | <pre>//bin/bash /var/lib/condor/execute/dir_30301/glide_NRPbun/execute/dir_2898/condor_exec.exe -</pre>                                                                                        |
| 4585         | 30 10 3520 1520 1224 5 0.0 0.0 0:00.02                                                 | sh ./CMSRunAnalysis.sh -a sandbox.tar.gzsourceURL=https://cmsweb.cern.ch/crabcache<br>outbox CMSRunAnalysis.sh -a sandbox.tar.gzsourceURL=https://cmsweb.cern.ch/crabcache                     |
| 4631         | 30 10 23508 13492 1572 5 0.7 0.1 0:00.70                                               | python CMSRunAnalysis.py -r /var/lib/condor/execute/dir_30301/glide_NRPbun/execute/di                                                                                                          |
| 5236         | 30 10 3624 1648 1160 S 0.0 0.0 0:00.01 Uscms01 30 10 921M 588M 115M R 93.7 3.7 4:07.20 | /bin/bash /var/lib/condor/execute/dir_30301/glide_NRPbun/execute/dir_2898/cmsRun-m<br>cmsRun -j FrameworkJobReport.xml PSet.py                                                                 |
| 3193         | 30 10 7024 4072 1100 S 0.0 0.0 0:00.71                                                 | — condor_procd -A /var/lib/condor/execute/dir_30301/glide_NRPbun/log/procd_address -L /var/lib/cond                                                                                            |
| 30119        | 20 0 16688 6724 5492 5 0.0 0.0 0:00.08                                                 | - condor_starter -f -a slot1 byggvir.Princeton.EDU                                                                                                                                             |
| 30123        | 30 10 3744 1848 1208 5 0.0 0.0 0:00.62                                                 | <pre>bin/bash /var/lib/condor/execute/dir_30119/condor_exec.exe -v std -name gfactory_instance -entry CMS_T3_U</pre>                                                                           |
| 2156         | 30 10 3472 1548 1208 5 0.0 0.0 0:00.12                                                 | <pre>└ /bin/bash /var/lib/condor/execute/dir_30119/glide_LreWcj/main/condor_startup.sh glidein_config</pre>                                                                                    |
| 2871         | 30 10 17884 8272 6320 5 0.0 0.1 0:00.16                                                | /var/lib/condor/execute/dir_30119/glide_LreWcj/main/condor/sbin/condor_master -f -pidfile /var/lib/c                                                                                           |
| 2874         | 30 10 18952 9168 6748 5 0.0 0.1 0:00.87                                                | - condor_startd -f                                                                                                                                                                             |
| 2892         | 30 10 17416 8676 6568 5 0.0 0.1 0:00.16                                                | └─ condor_starter -f vocms058.cern.ch                                                                                                                                                          |
| 3431         | 30 10 3352 1456 1196 5 0.0 0.0 0:00.10                                                 | /bin/bash /var/lib/condor/execute/dir_30119/glide_LreWcj/execute/dir_2892/condor_exec.exe -                                                                                                    |
| 3638         | 30 10 3520 1516 1224 5 0.0 0.0 0:00.02                                                 | sh ./CMSRunAnalysis.sh -a sandbox.tar.gzsourceURL=https://cmsweb.cern.ch/crabcache                                                                                                             |
| 3692         | 30 10 23508 13256 1340 5 0.0 0.1 0:00.70                                               | python CMSRunAnalysis.py -r /var/lib/condor/execute/dir_30119/glide_LreWcj/execute/di                                                                                                          |
| 4965         | 30 10 3624 1648 1160 S 0.0 0.0 0:00.01                                                 | <pre>/bin/bash /var/lib/condor/execute/dir_30119/glide_LreWcj/execute/dir_2892/cmsRun-m</pre>                                                                                                  |
| 5104         | 30 10 917M 566M 98616 R 97.6 3.5 4:07.37                                               | cmsRun -j FrameworkJobReport.xml PSet.py                                                                                                                                                       |
| 2873         | 30 10 6924 3412 1100 5 0.0 0.0 0:00.63                                                 | Condor_procd -A /var/lib/condor/execute/dir_30119/glide_LreWcj/log/procd_address -L /var/lib/cond                                                                                              |
| 24914        | 20 0 16688 6740 5492 5 1.3 0.0 0:00.09                                                 | - condor_starter -f -a slot7 byggvir.Princeton.EDU                                                                                                                                             |
| 24918        | 30 10 3744 1848 1208 5 0.0 0.0 0:00.61                                                 | <pre>bin/bash /var/lib/condor/execute/dir_24914/condor_exec.exe -v std -name gfactory_instance -entry CMS_T3_U</pre>                                                                           |
| 29404        | 30 10 3472 1548 1208 5 0.0 0.0 0:00.12                                                 | <pre>bin/bash /var/lib/condor/execute/dir_24914/glide_iEheSD/main/condor_startup.sh glidein_config</pre>                                                                                       |
| 30115        | 30 10 17884 8272 6320 5 0.0 0.1 0:00.16                                                | <pre>/var/lib/condor/execute/dir_24914/glide_iEheSD/main/condor/sbin/condor_master -f -pidfile /var/lib/c</pre>                                                                                |
| 30118        | 30 10 18928 9140 6748 S 0.0 0.1 0:00.88                                                | - condor_startd -f                                                                                                                                                                             |
| 2894         | 30 10 17012 8336 6568 5 0.0 0.1 0:00.16                                                | └─ condor_starter -f vocms058.cern.ch                                                                                                                                                          |
| 3697         | 30 10 3352 1456 1196 5 0.0 0.0 0:00.10                                                 | <pre>bin/bash /var/lib/condor/execute/dir_24914/glide_iEheSD/execute/dir_2894/condor_exec.exe - b ch /CMSPurAccluster ch = condbar tag are courselled attact //cmsuch core ch/createrche</pre> |
| 3823         | 30 10 3520 1520 1224 S 0.0 0.0 0:00.02                                                 | sh ./CMSRunAnalysis.sh -a sandbox.tar.gzsourceURL=https://cmsweb.cern.ch/crabcache<br>puthon CMSRunAnalysis.pv _r /var/lib/conder/evecute/dir 24014/slide iEbeSD/evecute/dir                   |
| 3852         | 30 10 23508 13228 1312 R 0.0 0.1 0:00.71                                               | python CMSRunAnalysis.py -r /var/lib/condor/execute/dir_24914/glide_iEheSD/execute/di<br>/bis/bash /vas/lib/condor/execute/dis_24914/glide_iEheSD/execute/dis_2894/cmsRun_m                    |
| 5049<br>5152 | 30 10 3624 1648 1160 S 0.0 0.0 0:00.01                                                 | <pre>└ /bin/bash /var/lib/condor/execute/dir_24914/glide_iEheSD/execute/dir_2894/cmsRun-m<br/>└ cmsRun -j FrameworkJobReport.xml PSet.py</pre>                                                 |
| 30117        | 30 10 919M 567M 98404 R 98.9 3.5 4:07.56<br>30 10 7048 4000 1100 S 0.0 0.0 0:00.73     | <pre>condor_procd -A /var/lib/condor/execute/dir_24914/glide_iEheSD/log/procd_address -L /var/lib/cond</pre>                                                                                   |
|              | F2Setup F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kill                          |                                                                                                                                                                                                |
| - Anell      |                                                                                        |                                                                                                                                                                                                |

Heterogeneous computing: batch job submitted from x86\_64 machine at CERN to

AArch64 worker node at Princeton University


Showcased on Fedora 19 on APM Mustang development board

Moving to CentOS 7.2 on HP Moonshot + 6 x m400 (production-level system)

## Numerical Validation (ARMv8)

We used CMSSW\_7\_2\_0 pre-release for **x86\_64** and **AArch64** reconstruction comparison, where input were generated on **x86\_64**.

~950 differences were detected, but majority were minimal, i.e. non-significant; Examples:



### What's new? #1

#### Official CMSSW Integration Builds (IBs) now include **aarch64** and **ppc64le**!

| CMSSW_8_1_X_2016-02-                                                          | Architectures                                        | Builds      | Unit Tests       | RelVals             | Other<br>Tests | FWLite      | Q/A |
|-------------------------------------------------------------------------------|------------------------------------------------------|-------------|------------------|---------------------|----------------|-------------|-----|
| 21-0000                                                                       | slc6_amd64_gcc493<br>Full Build                      | See Details | 4 Tests Failing  | Pass: 841 Fail: 12  | See Details    | See Details | Q   |
| <ul> <li>Static Analyzer</li> <li>Modules to thread unsafe statics</li> </ul> | slc7_aarch64_gcc530 26 Warnings Unknown Missing test |             |                  |                     |                | s!          | Q   |
| Modules to thread unsafe EventSetup products<br>HLT Validation<br>Valgrind    | slc7_amd64_gcc530<br>Full Build                      | 19 Warnings | 5 Tests Failing  | Pass: 1193 Fail: 18 | See Details    |             | Q   |
| DQM Tests                                                                     | slc6_amd64_gcc530<br>Full Build                      | 19 Warnings | 3 Tests Failing  | Pass: 1233 Fail: 3  | See Details    |             | Q   |
|                                                                               | fc22_ppc64le_gcc530<br>Full Build                    | 47 Warnings | 32 Tests Failing | Pass: 1158 Fail: 30 | See Details    |             | Q   |

No new pull requests since CMSSW\_8\_1\_X\_2016-02-19-2300

**Note:** more work is needed to make everything stable

\$ file /cvmfs/cms.cern.ch/{slc7\_aarch64\_gcc530,fc22\_ppc64le\_gcc530}/cms/cmssw/CMSSW\_8\_0\_0
/cvmfs/cms.cern.ch/slc7\_aarch64\_gcc530/cms/cmssw/CMSSW\_8\_0\_0: directory
/cvmfs/cms.cern.ch/fc22\_ppc64le\_gcc530/cms/cmssw/CMSSW\_8\_0\_0: directory



### What's new? #2

(1) CVMFS 2.3.0 (dev) is building on CentOS 7.2/aarch64 since Feb 14th nightly build

- See "Technology Previews" under "CernVM-FS Downloads" page
- We are running CVMFS client under aarch64 since before ACAT '14 (September 2014) and have not observed issues
- Server to be tested once OverlayFS issues are solved (currently one needs aufs)

(2) Static PRoot/QEMU + CentOS/Fedora rootfs setup for doing non-native installations

(3) CMSSW port to **ppc64le (POWER8)** discovered 2 issues in LLVM (all resolved upstream)

(4) Attempt to for CMSSW ppc64 (big-endian) port revealed issues

- Bundled LLVM inside ROOT 6.06 is broken (waiting for move to 3.8.0)
- pyroot is not endian safe (patch WIP)

**(5)** Preparations for **Open Science Grid (OSG)** full (hopefully) repository rebuild for **aarch64** (will also require some EPEL packages to be built)

# POWER8 Very Early Comparison

| CMSSW reconstruction, Run II-like                             | 2xIBM 8247-22L                 | 2xHaswell E5-2699         |
|---------------------------------------------------------------|--------------------------------|---------------------------|
| # Physical core comparison (8 vs 2 th                         | reads/proc) No                 | o impact in performance   |
| Single thread (performance)<br>Multi threaded (performance)   | 0.156907 ev/s<br>0.155383 ev/s |                           |
| Single thread (peak RSS)<br>Multi threaded (peak RSS)         | 15'190.5 MB<br>3'145.62 MB     | 3'341.89 MB<br>1'859.4 MB |
| # Full machine comparison (160 vs 72<br>or (40 vs 18 4-thread |                                | emory savings             |
| Multi threaded (performance)                                  | 2.78965 ev/s                   | 3.65784 ev/s              |
| Multi threaded (peak RSS)                                     | 97'844 MB                      | 38'824.2 MB               |

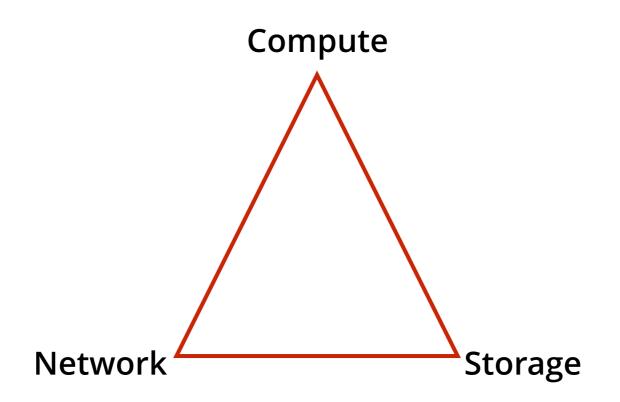
**Intel Xeon Haswell (E5-2699)** provided **1.31x more events/s** compared to IBM POWER8 (8247-22L)



#### Datacenter-in-a-box

IBM/ASTRON (in Zurich) DOME 64-bit µServer for SKA big data challenge

- 19" 2U w/ combined cooling & power
- 128 compute nodes
- 1536 ppc64 cores / 3074 threads
- 6 TB DRAM
- 1.28 Tbps Ethernet (@40Gbps x 32)
- Expected total power is ~6kW
- Hot-water cooled for efficiency and density
- Upstream support in future, currently runs Fedora rootfs + Freescale kernel & uboot
- Memory bandwidth density:


DOME 128 nodes 2U: **159GB/s/Liter** (peak) POWER8 S822L (2S) **13.9GB/s/Liter** (peak)

It's all about SoC and packaging! There will be **aarch64** version!

Motivation for porting **CMSSW** to **ppc64** 



### "Bring Balance to the Force"



#### Changing one (e.g. Compute) might disturb existing balance in the Force



# Summary

- Power constraints and market evolution may drive change in the kinds of processors we use
- Application diversity could drive heterogeneity to aid in {performance, power, cost} optimizations
- The race is heating up, and Intel/platform vendors are not sitting idle
- We have been exploring alternative general purpose architectures to the current x86\_64 cores, incl. ARMv7 32-bit, ARMv8 64-bit, PowerPC (LE and BE), Xeon Phi
- We have demonstrated both application software (CMSSW) as well as job submission using CRAB (CMS Remote Analysis Builder) to aarch64 nodes using a demonstrator cluster, and we will keep improving it
- We showed that heterogeneity by submitting jobs from x86\_64 machine and landing them on aarch64 worker nodes
- We are involved with open source communities and industry partners
- We need to continue investigating new SoCs/CPUs and platforms (e.g. Xeon D, new ARMv8.{0,1} SoCs and platforms using better processes (i.e. 14/16nm FinFET)

# **OFA**



minimu

( gove)

# BACKUP

### **CPU** Evolution

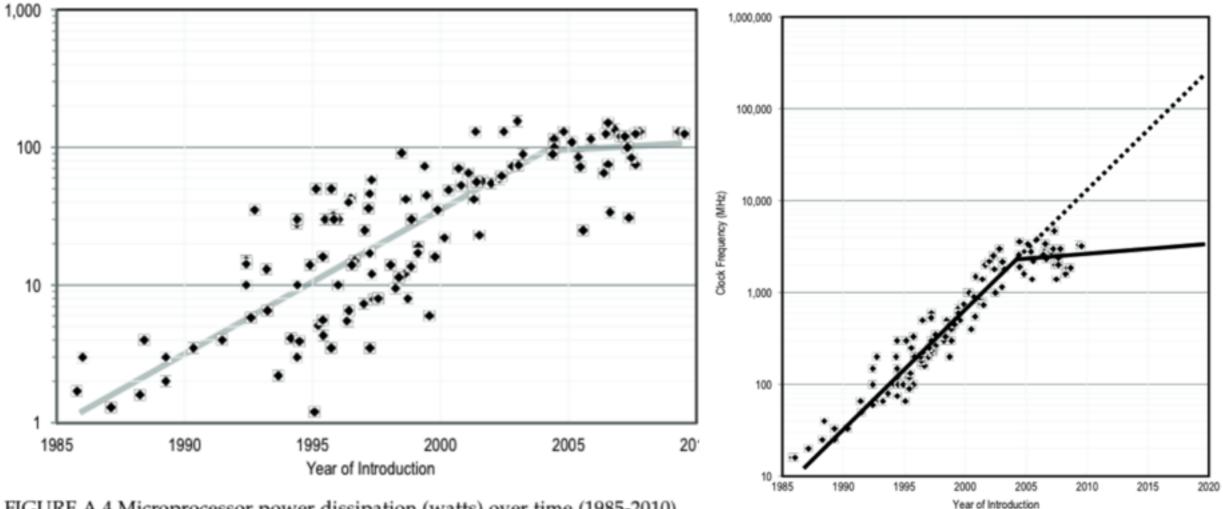



FIGURE A.4 Microprocessor power dissipation (watts) over time (1985-2010).

Source: "The Future of Computing Performance: Game Over or Next Level?"