Double Chooz

C. Mariani Columbia University

No.

Japan: HIT, Kobe, MUE, Niigata, TGU, TIT, TMU, Tohoku Russia: RAS, RRC Kurchatov Institute USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, MIT, Notre Dame, Sandia, Tennessee, UCD Brazil: CBPF, UNICAMP

Contents

- θ_{13:}
 - Neutrino oscillation matrix;
 - current knowledge;
- Accelerator vs. reactor neutrino experiments; •
- **Reactor experiments:** •
 - **Description;** _
 - v spectrum;
- Chooz experiment; •
- **Double Chooz experiment:** •
 - far/near detector experimental concept;
 - improvements w.r.t. Chooz experiment; _
 - far and near detectors;
 - Signal and background; _
 - current status; —
 - sensitivity;
- Conclusion.

θ_{13} : Neutrino mix matrix

θ_{13} – current knowledge

• global: $\sin^2(2\theta_{13}) < 0.13 (90\%)$

 $-\sin^2(\theta_{13}) < 0.035 (90\%)$

• Dominated by Chooz [M.Apollonio et al, Eur. Phys. J. C27 (2003) 331]

Missing information:

- 1. What is v_e component in the v_3 mass eigenstate? \Rightarrow The size of the "little" mixing
 - angle", θ_{13} ?
 - Only know $\theta_{13} < 13^{\circ}$
- 2. Is the μ τ mixing maximal?
 - $-35^{\circ} < \theta_{23} < 55^{\circ}$
- 3. What is the mass hierarchy?
 - Is the solar pair the most massive or not?
- What is the absolute mass 4. scale for neutrinos?
 - We only know Δm^2 values
- Do neutrinos exhibit CP 5 violation, i.e. is $\delta \neq 0$?

Neutrino mass hierarchy

There are many questions but the **Big Question** is "How big is the the little mixing angle θ_{13} ?"

Accelerator vs. Reactor exp.

- Long-Baseline Accelerators: Appearance $(v_{\mu} \rightarrow v_{e})$ at $\Delta m^{2} \approx 2.4 \times 10^{-3} \text{ eV}^{2}$
 - Look for appearance of v_e in a pure v_{μ} beam vs. L and E
 - Use near detector to measure background v_e 's (beam and misid)

T2K: $< E_v > = 0.7 \text{ GeV}$ L = 295 km

- Reactors: Disappearance $(\overline{v}_e \rightarrow \overline{v}_e)$ at $\Delta m^2 \approx 2.4 \times 10^{-3} \text{ eV}^2$
 - Look for a change in $\overline{\nu}_e$ flux as a function of L and E
 - Look for a non- $1/r^2$ behavior of the v_e rate
 - Use near detector to measure the un-oscillated flux

Double Chooz: $\langle E_v \rangle = 3.5 \text{ MeV}$ L = 1100 m

Long-Baseline Accelerator Appearance Experiments

- Oscillation probability complicated and dependent not only on θ_{13} but also:
 - CP violation parameter (δ)
 - 2. Mass hierarchy (sign of Δm_{31}^2)
 - 3. Size of $\sin^2\theta_{23}$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}}\left(1 - 2S_{13}^{2}\right)\right) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \\ &+ 4S_{12}^{2}C_{13}^{2}\left\{C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta\right\}\sin^{2}\frac{\Delta m_{21}^{2}L}{4E} \\ &- 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\left(1 - 2S_{13}^{2}\right) \end{split}$$

 $\Rightarrow These extra dependencies are both a "curse" and a "blessing" since they will let us measure CP violation if <math>\theta_{13}$ is big enough

Reactor Disappearance Experiments

• Reactor disappearance measurements provide a straight forward method to measure θ_{13} with no dependence on matter effects and CP violation $P(v_e \rightarrow v_e) = 1 - \sin^2 2\theta_{13} \sin^2(1.27 \Delta m^2 [eV^2] L[m]/E[MeV])$

Reactor experiment

Reactor: v spectrum

The \overline{v}_e energy spectrum Reactor v_e spectrum (a.u.) Observed spectrum (a.u.) 70 $v_e+p\rightarrow n+e^+ cross$ section (10⁻⁴³ cm²) 60 50 $\sigma(\overline{\nu}_e + p \rightarrow e^+ + n)$ 40 30 20 10 oE. - 6 3 5 9 10 E_v (MeV) $E_{v} \sim 4^{+4}_{-2} MeV$

 v^{s} are produced in β -decays of fission products.

 $\sim 6 \times 10^{20} \, \overline{v}_e \, / \, s \, / \, reactor$ Assuming 3 GWth

Chooz experiment

Far - Near: why use 2 detectors

Reactor experiments

P = 8.2 GWth/2L = 1.05(0.4)km P = 11.6GWth/4 17.4 GWth/6 (2011~) L ~ 1.8km

P = 16.1 GWth/6 L ~ 1.4km

Double Chooz experiment

Near detector

P=8.4GWth

0.4km

Far detector

1.05km

– Near

- Distance: 410 m;
- Deep: 115 m.w.e;
- Rate: ~500 v/day

Far

- Distance: 1050 m;
- Deep: 300 m.w.e;
- Rate: ~70 v/day

Systematic on reactor power, neutrino spectrum, will cancel out when doing a relative measurement.

Improvements w.r.t. Chooz exp.

Chooz : R = 1.01 ± 2.8% (stat) ± 2.7% (syst)

- Statistical error will be reduced by a factor 7 (from 2.8% to 0.4%):
 - Larger Volume (x2): 5.55m³ -> 10.3m³
 - Longer Run Time (x20): from ~months to 5 years
 - More Events (x20) from 2.7k to 60k (far+near only 2y, far 5y in total);
- Systematic error will be reduced from 2.7% to 0.6%:
 - Reactor
 - Detector
 - Analysis

Signal: Inverse β Decay

- Detect anti-neutrinos via inverse beta decay
 - $p + \overline{v} \rightarrow n + e^+$
- In Gd-loaded scintillator
 - e⁺ signal 1-8MeV
 - e⁺ e⁻ annihilation(2 x 511 keV))
 - $E_{vis} = E_v (M_n M_p) + m_e$
 - Delayed neutron capture on
 - Gd ~30 µs ~ 8 MeV (>80%)
 - H ~200 µs 2.2 MeV

Signal cont'd

The Lab

Detector: far and near

Muon Tracking

- Outer Veto
 - Tag near-miss muons
 - Entry point of any muon
- Inner Veto
 - Efficient tag of muons and secondaries
 - Track muon
- Muon Electronics
 - Attenuated output of Inner Detector PMTs
 - Track muon
- Use all 3 to reduce background systematic errors.

Outer Veto

Tag near-miss muons, or missing deposit energy in the inner detector

- Chooz reactor off data gives $\sim 1.5v/day$
- Strips of plastic scintillator and wavelength shifting fiber

Outer Veto cont'd

OV design for near detector consists of upper and lower tracking planes

Each plane is fully active and consists of modules oriented in both X and Y directions

OV modules consist of 2 layers of 64 scintillator strips with WLS fibers connected to a multi-anode PMT

Electronics developed and tested at Columbia (Nevis) $_{23}$

Full-scale OV module prototype built at U. Chicago

Outer Veto: electronics

OV Readout Electronics

- Multi-anode PMT (M64)
- Multi-anode readout chip (Maroc2)
- Multi-anode readout card (custommade at Columbia / Nevis labs)

OV High Voltage

- CAEN SY527 HV Mainframe
- 3-5 CAEN A734N HV cards
- HV Software developed at MIT

- Efficient tag of cosmic ray muons and fast neutrons
 - LAB and tetradecane, 50 cm thickness
 - 78 8" PMTs (encapsulated IMB tubes))
 - Reflective walls (painted and foil)

Buffer vessel

Installation already completed !

- Stainless steel 3mm thick
- Inner Height: 5674mm
- Inner Diameter: 5516mm
- Will contain 110m³ of mineral oil
- 390 10'' PMTs to be attached to walls

Acrylic vessel

Gamma catcher

- 12 mm thick acrylic
- Inner Height: 3550 mm
- Inner Diameter: 3392 mm
- Will contain 22.3m³ of scintillator (un-doped)

Target

- 8 mm thick acrylic
- Inner Height: 2458 mm
- Inner Diameter: 2300 mm
- Will contain 10.3m³ of Gd-doped scintillator (1 g/l)

To be installed in June 2009!

Inner detector: photomultiplier

For Neutrino Signals

- Attenuated signals for muon electronics
- 15% coverage with 390 10" PMTs
- PMTs are angled to improve light collection uniformity
- Aim for 7% resolution at 1 MeV
- Low background version
- Extensive testing in Japan and Germany was performed.

Installation has started and is happening right now !

- Gives Info on type of event
 - Event ID (from energy of event)
 - Muon stops, crosses or passes ID?
- Information is passed to Waveform Digitizers

Waveform Digitizer

- 500 MHz 8-bit flash ADC (developed with Caen V1721)
 - Less dead-time (for our expected event rate)
 - In-house firmware allows choice of event size based on
 - Info from trigger
 - Time between consecutive events
 - More data will be taken for the most interesting events

100kg Gd salt

Gd - doped liquid scintillator

- Stability tests reassuring;
- No change seen over ~700 days;
- Scintillator ingredients for both detectors ready to be mixed (MPIK);
- Mixing in one batch for both detectors;
- Exact proportions for both detectors (H, Gd);

Backgrounds

Our signal is a positron followed by a neutron capture (2 triggers)

Accidental bkg

- Dominant source of accidentals -Radioactivity (from PMT)
- Solution we aim for a singles rate of less than 5/s above 0.7 MeV
 - Stringent radio purity constraints

Correlated bkg

- Cosmogenics (β-neutron)
 - Li-9 and He-8 long lived
- Fast neutrons
 - Proton Recoil (positron-like signal) followed by neutron capture
- Caused by muons!
 - Crossing
 - Missing
 - Stopping

Want Signal/Background ratio > 50

Backgrounds: correlated

<u>µ-Capture</u>

- Can cause nuclear breakup producing neutrons and cosmogenic nuclei
- Contributes to correlated backgrounds just as in previous 2 mechanisms
- Estimated from muon flux and µ⁻ capture rates in detector materials
- Expected to contribute <0.1% systematic error at both far and near detectors
- OV will be able to veto and track µ-capture on dead material in detector

Fast n background

- Due to "near-miss" muons
- Neutrons created in the rock can propagate to target and scatter off a proton
- Proton recoil in target fakes positron signal
- Estimated using MC simulations benchmarked against CHOOZ data
- Expected to contribute a 0.2% systematic error in both far and near detectors

• OV will be able to veto the "near-miss" muons producing these neutrons

Backgrounds: correlated

<u>Cosmogenics: ⁹Li</u>

- Created by high-energy showering muons
- β-decay of ⁹Li
 accompanied by neutron
 emission 50% of the time
- Has a lifetime of ~170 ms
- Estimated by fitting
 CHOOZ data and scaling to
 Double Chooz volume
- Expected to contribute a 0.7% (0.2%) systematic error in far (near) detector
- OV will be able to provide a tracked sample of muons to study this background

PMT radioactivity

- γ-rays from PMTs
 dominate the prompt signal
 event rate at 4-10 Hz
- Delayed signal event rate dominated by n capture on Gd (~83 h⁻¹ in far detector)
- Can measure accidental coincidence rate to 10% by reversing coincidence cut
- Expected to contribute <0.1% systematic error in both far and near detectors

• OV will also veto "nearmiss" muons associated with delayed signal

Background: summary

- → All sources of background are <u>muon</u>-induced
- → OV especially important for far detector (worse signal-to-background ratio)

Detector	Site				Backgroun	d	
			Accid	lental		Correlated	
			Materials	PMTs	Fast n	μ -Capture	⁹ Li
CHOOZ		Rate (d^{-1})					0.6 ± 0.4
$(24 \ \nu/d)$		Rate (d^{-1})	0.42 ±	= 0.05	1.01 ± 0	$0.04(stat) \pm 0$	0.1(sys)
	Far	bkg/ν	1.6	5%		4%	
		Systematics	0.2	2%		0.4%	
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	0.2 ± 0.2	< 0.1	1.4 ± 0.5
$(69 \ \nu/d)$	Far	bkg/ν	0.7%	2.2%	0.2%	< 0.1%	1.4%
		Systematics	< 0.1%	< 0.1%	0.2%	< 0.1%	0.7%
			/				
Outer ve	to will	help veto th	ese backg	round eve	ents		
Out	er vet	o will provide	e importan	t handle f	or studyin	g this bacl	kground

Systematics

Systematic errors on the normalization of the detectors are kept low through:

- Improved detector design—fewer analysis cuts
- Two detector concept—relative normalization and efficiencies instead of absolute

			CHOOZ	Double Chooz	
Reactor		Solid Angle		0.06%	
Detector	H nuclei in Target	Volume	0.3%	0.2%	
		Fiducial Volume	0.2%	0	•
		Density		0.1%	
		H/C	0.8%	0	•
Detector	Electronics	Dead Time		0%	
Particle	Positron	Escape	0.1%	0	•
Identification		Capture	0	0	
		Energy Cut	0.8%	0.2%	
Particle	Neutron	Escape	1.0%	0	•
Identification		Capture (% Gd)	0.85%	0.3%	
		Identification Cut	0.4%	0.1%	
Particle	Antineutrino	Time Cut	0.4%	0.1%	
Identification		Distance Cut	0.3%	0	•
		Unicity	0.5%	0	•
Total			1.5%	0.5%	

hep-ex/0606025v4

Critical to keep background contributions to systematics 0.1%

Systematic error: detector

Chooz Double Chooz

	Solid angle	0.3 %	<0.1 %	
	Volume	0.3 %	0.2 %	Precise target mass measurement
Detector	Density	0.3 %	<0.1 %	Accurate T control (near/far)
- induced	H/C ratio & Gd concentration	1.2 %	<0.1 %	Same scintillator batch + Stability
	Spatial effects	1.0 %	<0.1 %	Spill in/out compensate to ~1%
	Live time	?	0.25 %	Difference near/far is relevant !

Systematic error: reactor

С	hooz			Double Cho	oz
•	Flux and cross-section	1.9%	->	<0.1%	
•	Reactor Power 0.7%	->		<0.1%	
•	Energy per fission 0.6%	6 ->		<0.1%	
	Two lidentical datasts	and further I	au ha	alumaunda)	

Two 'identical' detectors (with low backgrounds)

Systematic error: analysis

- Lower threshold (see all of positron spectrum)
- Target Acrylic vessel (no fiducial volume cut)

	CHOOZ	Doub	le-CHOOZ
selection cut	rel. error $(\%)$	rel. error $(\%)$	Comment
positron energy [*]	0.8	0	not used
positron-geode distance	0.1	0	not used
neutron capture	1.0	0.2	Cf calibration
capture energy containment	0.4	0.2	Energy calibration
neutron-geode distance	0.1	0	not used
neutron delay	0.4	0.1	
positron-neutron distance	0.3	0 - 0.2	0 if not used
neutron multiplicity *	0.5	0	not used
$\operatorname{combined}^*$	1.5	0.2 - 0.3	

*average values

* Easier to control near vs far than absolute

Status: Near Lab

Detector to be integrated by end of 2011.

Status: Far Detector

Lab for the original Chooz experiment

Status: Far Detector

IV PMTs installed (Feb)

Status: Far Detector

Buffer Vessel during construction (at company).

Installation already completed.

Status: PMT installation

- PMT installation started this May;
- Will be completed by 29 of June for the bottom and wall PMTs;
- Lid PMTs installation in September

Status: Storage facility

Status: DAQ and online monitor

Online: data-wise

Data quality monitoring (Pseudo-online Mon.) • and histogram viewer graphical interface (Tokyo Tech, Tohoku-Gakuin)

Sin²20₁₃ (90%CL)

10

10

Provided by M. Mezzetto

Sensitivity

- First phase just far detector •
- Second phase both detectors •

6

Sensitivity cont'd

Conclusion

- NOW : far detector construction
- End of 2009 : far detector running
- 2011 : near detector installation
- 2013: reach target sensitivity $\sin^2 2\Theta_{13} \sim 0.03$ (for $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$)

Backup slides

Complementary to Beam experiments

- Example of Double Chooz results compared to T2K
 - Assume full power for T2K
 - 2 years of 2 detector (DC)
 - Full =90%, dashed 3σ
- No dependence on δcp (reactor)

Reactor Experiments

- Disappearance of anti-neutrinos (independent of δ_{cp} and sign of Δm_{31} , weak dependence of $\Delta m_{21})$
- ~MeV energy signals, short distances (no matter effects);
- Independent from neutrino cross section and nuclear effect (FSI)
- But, limited by knowledge of processes inside reactor;

Radioactive Contamination Levels

	^{40}K	^{238}U	^{232}Th	⁶⁰ Co
	g/g	g/g	g/g	mBq/Kg
Target LS	10^{-10}	10^{-13}	10^{-13}	
Target Acrylics	10^{-8}	10^{-11}	10^{-11}	
GC LS	10^{-10}	10^{-13}	10^{-13}	
GC Acrylics	10^{-8}	10^{-11}	10^{-11}	
Buffer Oil	_	10^{-12}	10^{-12}	
Buffer Vessel		10^{-9}	10^{-9}	15
Veto LS		10^{-10}	10^{-10}	

Total systematics: <~ 0.6% Statistics: 60000 neutrino events @ Far Detector

Near detector location

Spent fuel effect under study kopeikin and al.

Background Comparison

Detector	Site		Background				
			Accid	lental		Correlated	
			Materials	PMTs	Fast n	μ -Capture	⁹ Li
CHOOZ		Rate (d^{-1})		taxes and the		his second	0.6 ± 0.4
$(24 \ \nu/d)$		Rate (d^{-1})	$0.42 \pm$	-0.05	1.01 ± 0	$0.04(stat) \pm 0$	0.1(sys)
	Far	bkg/ν	1.6	5%		4%	
		Systematics	0.2	2%		0.4%	
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.5 ± 0.8	0.2 ± 0.2	< 0.1	1.4 ± 0.5
(69ν) d)	Far	bkg/ν	0.7%	2.2%	0.2%	< 0.1%	1.4%
		Systematics	< 0.1%	$<\!0.1\%$	0.2%	$<\!0.1\%$	0.7%
Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	1.3 ± 1.3	0.4	9 ± 5
$(1012 \nu/d)$	Near	bkg/ν	0.5%	1.7%	0.13%	< 0.1%	1%
		Systematics	$<\!0.1\%$	$<\!0.1\%$	0.2%	$<\!0.1\%$	0.2%
						-ttt-	
ex/0606025			= conserv (with new	ative location:	near dete Nv/2 , N _u /3	ector locatio	n Sigr

DC, Dayabay and RENO finally start data taking within a year or two.

The neutrino study will go in the next phase a few years later.