

Status of NBI for ITER and the related test facility

The NBTF team - presented by G. Serianni

Consorzio RFX, Padova, Italy LNL, Legnaro (PD), Italy

Neutral Beam Injectors (NBI) for ITER H-CD

Large scientific/technological step from existing NBIs → a <u>full scale</u> Neutral Beam Test Facility (PRIMA)

Agreements between IO and F4E (with endorsement of Japan and India) and between F4E and Consorzio RFX

R. S. Hemsworth et al., Rev. Sci. Instrum. **79** (2008) 02C109 L. Grisham et al., Fusion Eng. Des. **87** (2012) 1805

• Physics of ITER Neutral Beam Injectors (NBI)

- SPIDER

	Unit	Н	D
Beam energy	keV	100	100
Maximum Beam Source pressure	Pa	< 0.3	< 0.3
Uniformity	%	±10	±10
Extracted current density	A/m ²	>355	>285
Beam on time	S	3600	3600
Co-extracted electron fraction (e-/H-) and (e-/D-)		<0.5	<1

	Unit	Н	D
Beam energy	keV	870	1000
Acceleration current	А	49	40
Maximum Beam Source pressure	Pa	0.3	0.3
Beamlet divergence	mrad	≤7	≤7
Beam on time	s	3600	3600
Co-extracted electron fraction (e ⁻ /H ⁻) and (e ⁻ /D ⁻)		<0.5	<1

– MITICA

- Status of PRIMA, the ITER NBI test facility
- L. Svensson et al., SRD-53-PR, -MI, -MP, -SI, -SP (NEUTRAL BEAM TEST FACILITY), Version 1.2, ITER Organization internal document ITER_D_2WCCSG, October 2009

• The accelerators of ITER Neutral Beam Injectors

Physics design: particle trajectories & heat loads

Based on designs by IPP (RF source) and JAEA (5-stages accelerator)

P. Agostinetti et al., Nucl. Fusion 56 (2016) 016015

MITICA: Magnetic configuration

Serianni, IPAB, 14 March 2016

6

Background gas density

E. Sartori et al., Rev. Sci. Instrum. 87 (2016) 02A502

7

Heat loads and optics: feedback

P. Agostinetti et al., Nucl. Fusion 56 (2016) 016015

MITICA grid system

P. Agostinetti et al., Nucl. Fusion 56 (2016) 016015

SPIDER: magnetic system

1. Mechanical offset of the GG apertures

P. Agostinetti et al., Nucl. Fusion 51 (2011) 063004

2. Deflection magnets and ferromagnetic

Serianni, IPAB, 14 March 2016

SPIDER grid system

Simulations of SPIDER magnetic deflection compensation systems

G. Serianni et al., Rev. Sci. Instrum. 87 (2016) 02B927

Drift region: space charge compensation

t=1.25 µs

200

100

8(10de y

60

40

20

(c)

At t=0 the beamlets expand under the influence of their own space charge

By interactions with background gas the secondary particles are created: main reactions: ionization of H₂ by Hand stripped electrons

A balance between trapped and ejected particles establishes

System reaches the equilibrium in a time: t=1/($n_{gas}\sigma_{ion}^*v_b$) $\approx 3 \ \mu s.$ (n_{gas} , σ_{ion} , v_b are gas density, ioniz. Cross section and beam speed respectively.)

E. Sartori et al., Rev. Sci. Instrum. 87 (2016) 02B917

Serianni, IPAB, 14 March 2016

MITICA Extractor and Accelerator

• Aiming:

- Horizontal & vertical beamlet aiming
- Vertical beamlet group aiming
- Compensation of repulsion:
 - Aperture displacement
 - Kerbs

R. Maurizio et al., under review for publication in Nucl. Fusion

Benchmark of numerical codes: collaboration NIFS-Consorzio RFX

Recently, analogous comparison activity started with NIO1 (see Veltri)

P. Veltri et al., Rev. Sci. Instrum. 87 (2016) 02B908

Test of Asymmetric Deflection Compensation: collaboration JAEA-Consorzio RFX

 Magnetic Grid for Asymmetric Deflection Compensation under validation in Negative Ion Test Stand at JAEA

Half-grid featuring uncompensated magnetic deflection

Half-grid provided with Asymmetric Deflection Compensation Magnets

• Status of ITER NBI test facility, PRIMA

PRIMA: Neutral Beam Test Facility

Prima hosts the two experiments: the negative ion source **SPIDER** and the 1:1 prototype of the ITER injector **MITICA** Each experiment is inside a concrete biological shield against X-rays and neutrons produced by the injectors Thanks to this shielding the assembly/maintenance area will be fully accessible also during experiments

Serianni, IPAB, 14 March 2016

PRIMA - Buildings and Auxiliaries

Main building hosting experiments

PRIMA buildings and auxiliaries available for plant installations since October 2014

Co-extracted electron fraction (e⁻/H⁻) and (e⁻/D⁻)

Beam on time

3600

<1

3600

< 0.5

 \mathbf{S}

SPIDER Source Components

THALES

The procurement contract includes Vacuum Vessel, Beam Source and Handling Tool

Contract signature in Oct 2012 with a Consortium (Thales, Zanon, Galvano-T, Cecom)

Vessel, realized by Zanon, delivered on Site in March 2015, Site Acceptance Tests passed, now electric and hydraulic flanges under installation

SPIDER VV during vacuum tests on-site SPIDER VV during baking on-site SPIDE

SPIDER VV inside the bio-shield

SPIDER - Beam Source

In vacuum He pressure and leak tests of the cooling circuit of a Plasma Grid segment

SPIDER Faraday Shields Lateral Walls manufactured and tested by Galvano-T

Plasma Grid segments

machined

Section view of the updated Cs Oven for SPIDER with main components n

View of the updated CAD model of SPIDER Cs Oven

Views of: 112kV BS ceramic supports (a), 12kV PG-EG post insulators (b), 100kV EG-GG post insulators

Serianni, IPAB, 14 March 2016

SPIDER - Beam Dump

- > SPIDER Beam Dump (BD) procured by INDIA Domestic Agency
- > BD delivered to Site on December 2014; Site Acceptance Tests performed in July 2015
- > In 2016 Beam Dump to be completed with TC's and then installed on a SPIDER Vessel Lid

SPIDER Beam Dump: Rear side

SPIDER Beam Dump: Front side

SPIDER PS - HV Deck & Transmission Line

HVD during installation

HVD completed, tested and accepted, during Installation of ISEPS inside

HV Deck is a Faraday cage, air insulated to ground at -100kV and hosting Ion Source Power Supply External size: 13m x 11m x 5m Insulating distance from ground and walls: 1m

Transmission Line connects HVD to SPIDER Vessel. Outer conductor grounded. Internal conductor, at -100kV, contains all ISEPS conductors. Insulation between inner and outer conductors by natural air

Factory tests of SPIDER Transmission Line

Supplier: Coelme srl (I)

Insulating Cooling pipes

Cross-section

SPIDER – Summary of status

- procurement of SPIDER components shared between F4E and INDA
- design of all components concluded; all procurement contracts launched between 2010 and 2013
- Factory activities, including manufacturing of components and factory acceptance tests, well advanced for almost all components; many components and plant systems delivered on site and now under installation
 - AGPS: shipping started 8/3/2016; start of work on site expected end April 2016
- All components to be installed by middle 2016 apart SPIDER Beam Source, to be be delivered to site in Q4 2016 and installed right afterwards
- During 2016 integrated commissioning including power supply integrated tests to be performed
 - Experimental phase to start at beginning of 2017

MITICA: 1:1 scale prototype of the ITER HNB injector

MITICA bio-shield and injector.

Transmission line (Japan Domestic Agency procurement) connected to vacuum vessel via High Voltage Bushing (in green), also procured by JADA

MITICA: Neutral Beam Injector Components

MITICA Power Supply

Aim: to feed Acceleration Grids (AGPS), Ion Source (ISEPS), and Residual Ion Dump (RID-PS) of MITICA injector **Main Systems:**

- <u>AGPS</u> composed of conversion system (AGPS-CS) feeding step-up transformers and diode rectifiers (AGPS-DCG)
- <u>HV Transmission Line (TL)</u> connecting power supplies to injector
- HV Deck (HVD1) Faraday cage air insulated, hosting ISEPS and connected to TL through air-gas High Voltage Bushing
- Residual Ion Dump Power Supply (RID-PS) applying electric field between plates of Residual Ion Dump

- Almost all of components realized
- First batch of them tested in factory and delivered to Site
- Ship arrived at Marghera port, closest port to Padova, in December 2015; first components delivered to Site
- Installation of JADA components started in December 2015 and due to be completed at beginning of 2017
- Afterwards insulating tests and power integrated tests to be performed

Step-up transformer

Internal view

HV Transmission Line

MITICA PS - JADA Components

MITICA PS - JADA Components

- Procurement of MITICA components shared between F4E and JADA
- Design of all components concluded (tech spec documentation of Beam Line Components under finalization)
- Procurement contracts signed since 2012 (JADA power supply components), in 2014 (F4E components Vessel, HVD1 and Bushing), and in 2015 (AGPS-CS, GRPS). Further procurement contracts to be signed in 2016–2017
- JADA components at well advanced manufacturing phase
- Installation of first JADA components started in December 2015
- By end 2016 also installation of F4E components to begin starting from Vacuum Vessel

International collaborations

