BEAM OPTICSAND MAGNET STUDIES FOR NEUTRALIZER STORAGE RINGS (NSR)
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The design of efficient storage ringswith large acceptance so that a neutralizer gas cell can beinserted requires both linear matrix formalism and
full field tracking calculation. M oreover large magnet aperture must be considered. First an unbiased search of suitable latticesis needed. Matrix
formalism is simple enough to allow use of symbolic manipulation programs, with sthe beam direction, x,y the transver se coordinates, and M,, M,

the corresponding transport matrices: the conditionsthat [trace(M,)| < 2 and [trace(M
Inequalitiesfor lattice side lengths. Numerical optimizations are also discussed. Differently

)| < 2 can bereduced (automatically) to simple

om usual storagerings, primary beam consumesin few

passage through neutralizer cell, so angle injection seems possible. Field tracking smulation needs a rapid method to calculate field from pole
footprints and shape, which preferably avoidsthe use of differential for mulas. The method proposed is compared with analytic result for

flat poles. After deter mining suitable magnet poles, full 3D magnets can be designed, for verification. Analogies with Fixed-Field Alternating

Gradient (FFAG) accelerators are being investigated.

. INTRODUCTION: Storageringsand neutralizer
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Figure 1. artistic view of ion source, storagering and tokamak (see other poster);
vertical mounting and recovery of D* beam will be under stood in the following
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Figure 2: a) the lattice (magnet and beam path scheme) of fig. 1, with a different
injection at K (inflector steerer); T istokamak receiving neutral D° from neutralizer
N; herenumber M of main dipolesisM=2. b) adifferent lattice, with triangular

symmetry and M=3; c¢) therectangular lattice (that is M=4), with some notation: R
bending radius, D1, D2, D3 and D4 dipole magnets, £ and respectively L are half

lengths of the short and long straight sections; oo and B are entrance/exit angles (note

that angles of size 3 are adjacent to short secion for rectangular symmetry); d) the
rectangular lattice as before, but with injection on short section. Other polygonal

lattice (with M >4 and/or different bending angles) may be also considered; the square

latticeisas‘d’, but with {=L . Notethe turn number n, and itsorigin n=0.
Design study can be divided into 3 phases, of progressively detailed specification:

1) linear stability of x,y around thereference orbit x(z)=x'(2)=y(z)=y'(2)=0, where
local system Xxyz is so defined: z tangent to reference orbit, x centrifugal force
direction, y normal to both; moreover sisorbit arclength. Magnet field By is
taken piecewise constant (no fringefield)

2) Inthe poleonly approximation, the pole shape and gap aretaken in account.
Fringefield isusually inferred from empirical example, but hereis computed by
special boundary conditions applied to 3D simulation of the pole region only

3) After alatticeisknown to work in previoustwo phases, coil and yoke 3D
geometry can be specified, and verified by complete simulations

Thetransfer matrix M,(s) for phase space (x,x’) and M (s) for phase space (x,x’)
areknown as function of lengths L and £ and magnet parameter

R 0B,
B, Ox

at reference orbit; we consider only magnet with field index n=0 (that isflat poles).
Let Mx(s) and My(s) be computed for half turn (s=2L + 24+ n R), sincelattice

repeats each half aturn. Linear stability requires

l,=tana , {,=tanf n

—2<TrM, <2 | -2<TrM, <2
1
We <t (eq. 1)
¢{=0.8R , L—=238R
(€. 3)

and computewhere eg. 1issatisfied ta
(whiteareain Fig. 3). Inthisregion 0
we choose (to complete linear design
and to obtain a phase advance per
turnasinfig. 4 and 5)
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Figure4: x,x’ phase space nominal
beam (colored ellipse), for theturn
number n aslabels. Fractional turn
numbers, asdefined in Fig. 2.c, refers
to beam passage at symmetry planes.
Remaining beam is g ected at n=4, by
the action of theinflector K

Figure5: y, y’ phase space nominal
beam (colored ellipse), for theturn
numbersn=0,1,2,3 (same colorsasin
fig 4.a). Remaining beam will be

g ected at n=4, by the action of the
inflector K

Phase 2: the pole only calculation
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Figure 6: a) the 05
magnetic potential (a)
- 0.1
Vm leve lines, as

computed in a
realistic geometry
includingiron (azure
region) and coil. b)
TheVm level lines, EDB
computed by special
boundary conditions

aslabelled. Gray 0.1
region excluded from (b) q
simulations.
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Figure7: Analytical approximation for thefigure 6.b result about the

magnetic potential Vm level lines, with idealized geometry and boundary as
labelled. In case (a), eq. 5 holdsand green lineisVm=VO0.

In case (b), eq, 6 holds, and double blue lineis Neumann condition.

For figure 7 idealized geometry, a well known transform from z=x+iy to w plane

2 zs(s) . 1( 1+5> .
Z = — i} —(2s—1 s —1Ivw — 1
do do 1+7T ° nl—S (eq. 4)

map thefield region into the Im(w)>0 semiplane. With boundary condition of Fig.
7.awe havethe solution

2
1% 1 hl(l — S )
7 Uyt (201) — 1 — - In{w) vals)=1- i (€q. 5)
With boundary condition of Fig. 7.b wefind 1~ 1 s — 1
the solution VA r2(8) P In s 1 (eg. 6)
1) {1 !

Agreement of Fig 7 b and 6 b to true solution 6.a isreasonable and justifies use of
6.b assumptions, which allows the pole-only 3D calculation. Note an eigenfunction
expansion of eq (6) as

oV 1V X (41T me
=il = —— =—=2{14Y a5t (eq1. 7)
02 do =1
a; — —1 N 24 , ag = —156 . a4 = 3152/3 (eg. 8)
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Figure 8: detail view of 3D simulation (pole only) where perpendicular crossing

of reference orbit to a symmetry planeisvisible; thiswas obtained by adjusting
coil current.




