
BEAM OPTICS AND MAGNET STUDIES FOR NEUTRALIZER STORAGE RINGS (NSR)( )

M. Cavenago1, P. Veltri1,2, E. Sartori2g , ,

1 INFN – LNL, viale dell’Università 2, I-35020 Legnaro (PD), Italy; 2 Consorzio RFX, Corso Stati Uniti 4, I-35127 Padova, Italy, , g ( ), y; , , , y

The design of efficient storage rings with large acceptance so that a neutralizer gas cell can be inserted requires both linear matrix formalism and 
f ll fi ld ki l l i M l b id d Fi bi d h f i bl l i i d d M ifull field tracking calculation. Moreover large magnet aperture must be considered. First an unbiased search of suitable lattices is needed. Matrix 
formalism is simple enough to allow use of symbolic manipulation programs with s the beam direction x y the transverse coordinates and M Mformalism is simple enough to allow use of symbolic manipulation programs, with s the beam direction, x,y the transverse coordinates, and Mx, My

the corresponding transport matrices: the conditions that |trace(M )| < 2 and |trace(M )| < 2 can be reduced (automatically) to simplethe corresponding transport matrices: the conditions that |trace(Mx)| < 2 and |trace(My)| < 2 can be reduced (automatically) to simple 
inequalities for lattice side lengths. Numerical optimizations are also discussed. Differently from usual storage rings, primary beam consumes in few q g p y g g p y
passage through neutralizer cell, so angle injection seems possible. Field tracking simulation needs a rapid method to calculate field from pole 
f t i t d h hi h f bl id th f diff ti l f l Th th d d i d ith l ti lt ffootprints and shape, which preferably avoids the use of differential formulas. The method proposed is compared with analytic result for
flat poles After determining suitable magnet poles full 3D magnets can be designed for verification Analogies with Fixed Field Alternatingflat poles. After determining suitable magnet poles, full 3D magnets can be designed, for verification. Analogies with Fixed-Field Alternating 
Gradient (FFAG) accelerators are being investigated.( ) g g

I. INTRODUCTION: Storage rings and neutralizer Phase 2: the pole only calculationg g
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Figure 1: artistic view of ion source, storage ring and tokamak (see other poster); 
vertical mounting and recovery of D+ beam will be understood in the following including iron (azure 

region) and coil. b) 
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0

n=0

n=7/2 n=5/2

Figure 7: Analytical approximation for the figure 6.b result about the 
magnetic potential Vm level lines, with idealized geometry and boundary as 
labelled In case (a) eq 5 holds and green line is Vm=V0injection at K (inflector steerer); T is tokamak receiving neutral D0 from neutralizer 

N; here number M of main dipoles is M=2.  b) a different lattice, with triangular 

7/ labelled. In case (a), eq. 5 holds and green line is Vm=V0.
In case (b), eq, 6 holds, and double blue line is Neumann condition. 

symmetry and M=3; c) the rectangular lattice (that is M=4), with some notation: R 
bending radius, D1, D2, D3 and D4 dipole magnets, l and respectively L are half 

(d)
For figure 7 idealized geometry, a well known transform from z=x+iy to w plane

g , , , p g , p y
lengths of the short and long straight sections; α and β are entrance/exit angles (note 

that angles of size β are adjacent to short secion for rectangular symmetry); d) the n=19/4
(d)

that angles of size β are adjacent to short secion for rectangular symmetry); d) the 
rectangular lattice as before, but with injection on short section. Other polygonal 

l tti ( ith M>4 d/ diff t b di l ) b l id d th

n 19/4
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map the field region into the Im(w)>0 semiplane With boundary condition of Fig

(eq. 4)

lattice (with M>4 and/or different bending angles)  may be also considered; the square 
lattice is as ‘d’, but with l=L . Note the turn number n, and its origin n=0. 

n=3/4 map the field region into the Im(w)>0 semiplane. With boundary condition of Fig. 
7.a we have the solution

Design study can be divided into 3 phases, of progressively detailed specification:

1) i i i f f i ( ) '( ) ( ) '( ) 0

n=11/4

7/4

(eq. 5)

1) linear stability of x,y around the reference orbit x(z)=x'(z)=y(z)=y'(z)=0, where 
local system xyz is so defined: z tangent to reference orbit, x centrifugal force 

n=7/4
With boundary condition of Fig. 7.b we find 
th l ti ( 6)direction, y normal to both; moreover s is orbit arc length. Magnet field By is 

taken piecewise constant (no fringe field) Figure 4: x,x’ phase space nominal

the solution (eq. 6)

p ( g )

2) in the pole only approximation, the pole shape and gap are taken in account. 

Figure 4: x,x  phase space nominal 
beam  (colored ellipse), for the turn 
number n as labels Fractional turn

Agreement of Fig 7 b and 6 b to true solution 6.a is reasonable and justifies use of 
6 b assumptions which allows the pole-only 3D calculation Note an eigenfunctionFringe field is usually inferred from empirical example, but here is computed by  

special boundary conditions applied to 3D simulation of the pole region only

number n as labels. Fractional turn 
numbers, as defined in Fig. 2.c, refers 
t b t t l

6.b assumptions, which allows the pole-only 3D calculation. Note an eigenfunction 
expansion of eq (6) asp y pp p g y

3) After a lattice is known to work in previous two phases,  coil and yoke 3D 
to beam passage at symmetry planes.  
Remaining beam is ejected at n=4, by 

(eq. 7)

geometry can be specified, and verified by complete simulations the action of the inflector K (eq. 8)

The transfer matrix Mx(s) for phase space (x,x’) and My(s) for phase space (x,x’)  
l

y
are known as function of lengths L and l and magnet parameter

at reference orbit; we consider only magnet with field index n=0 (that is flat poles).  y g p
Let Mx(s) and My(s) be computed for half turn  (s=2 L + 2 l + π R), since lattice 
repeats each half a turn. Linear stability requiresrepeats each half a turn. Linear stability requires 

We set
(eq. 1)

We  set

d h 1 i i fi d

(eq. 3) Figure 5: y, y’ phase space nominal 
beam (colored ellipse) for the turnand compute where  eq. 1 is satisfied 

(white area in Fig. 3).  In this region 

beam  (colored ellipse), for the turn 
numbers n=0,1,2,3 (same colors as in 

we choose (to complete linear design 
and to obtain a phase advance per 

fig 4.a). Remaining beam will be 
ejected at n=4, by the action of the p p

turn as in fig. 4  and 5) inflector K

(eq. 3)
Figure 3: region where eq. 1 holds 
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Figure 8: detail view of  3D simulation (pole only) where perpendicular crossing 
of reference orbit to a symmetry plane is visible; this was obtained by adjusting(white area) , for eq. 2 parameters of reference orbit to a symmetry plane is visible; this was obtained by adjusting 
coil current.


