Development of a 1 MeV electrostatic accelerator, for fusion application at JAEA

M. Kashiwagi and M. Hanada

NB heating Tech Gr., Naka-fusion Institute, Japan Atomic Energy Agency (JAEA)

High energy and high current negative ion beam is required for heating and current drive for fusion plasma.

Development of negative ion source for ITER

Prototype accelerator for ITER

MeV accelerator (1MeV, 200A/m² (0.5A), 60s)

R&Ds for 1MeV beam acceleration has been performed by using a multi-aperture multi-grid (MAMuG) accelerator, that was proposed by JAEA.

Features of negative ion source for fusion application

Grid heat loading
①Highly negative ion production (200A/m²) at lower gas pressure (< 0.3Pa in the ion source) to suppress stripping loss
②High voltage vacuum insulation (1.2MV in total / 240 kV in one gap) at insulators and grids/grid support frames with large area with >1m².
③Suppression of grid loading by negative ions and electrons (<15% of total beam acceleration power)

1 Highly negative ion production at lower gas pressure

The negative ion current density of 310 A/m² was achieved at 0.1 Pa.

2 High voltage insulation in a vacuum : Insulators

High electric field at triple junction between metal/dielectric material /vacuum caused creeping discharge and limited the voltage.

The electric field concentration was suppressed by installing large stress ring.

2 High voltage insulation in a vacuum : Metal part

The gap between grids was designed based on the results of small electrodes. However, the required voltage (240kV/1gap) has not been achieved.

The database to design the large accelerator has been established for the ITER.

③ Suppression of grid power loading

③ Suppression of grid power loading

PG

EXG

Equi-

potential line

Compression of beam deflections

Beam trajectories and compression of beam deflection are examined by using a 3D beam analysis.

(1) Aperture offset of < 1 mm at the exit of the extraction grid ②Kerb with 1 mm in the thickness around the aperture area

Extraction grid for long pulse operation

The new extraction grid has been demonstrated for the ITER beam source.

Reduction of grid heat loading

Expansion of pulse length

The long pulse acceleration of 60 s with the ITER-relevant beam (0.97MeV, 190A/m²) has been successfully demonstrated for the first time.

To achieve the ITER requirement (1MeV, 200A/m² (40A),3600 s), R&Ds have been proceeded in JAEA.

①High current negative ion beam current (200A/m2) <0.3Pa was achieved in KAMABOKO source.

②Database to design the high voltage insulation in the ITERclass large accelerator has been established. Then, high voltage holding of 1MV was achieved.

③Grid loading has been successfully suppressed from 30% to 10 % by the compensation of beam deflections and optimization of extraction grid.

Finally, the long pulse acceleration of 60 s with the ITERrelevant beam (0.97MeV, 190A/m2) has been successfully demonstrated for the first time.