

March 14-15, 2016 Laboratori Nazionali di Legnaro

David Mascali, Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud - Catania

Perspectives about the production of multiplycharged ions at high intensities: Innovative schemes of microwave-to-plasma matching The B-min configuration multiply charged ions production

Solenoids for *Axial confinement*

Hexapole for radial confinement

Extraction system

"B_minimum" Magnetic Field structure

> Action is Action is

ECR Plasma $n_e \sim 10^{12} \text{ cm}^{-3}$ $T_e \sim \text{ tens keV}$ $T_{ion} \sim \text{ ms}$ Gas injection system

Incident microwaves few **kW** at **tens GHz**

ECR Surface $B_{ECR} = \omega_{RF} m_e/e$

Overcoming the current limits of ECRIS

- 1. High Frequency Generators to increase the plasma density;
- 2. High Magnetic Fields to make longer the ions confining time;

Brute force cannot be anymore used because of technological reasons (magnets, hot electrons generations, plasma overheating, cooling, ...)

Alternative heating schemes

Development of advanced diagnostics tools to make a step forward in understanding heating and confinement mechanism

A new approach

Classical scheme of microwave launching in a ECRIS

Switching to a MICROWAVE ABSORPTION ORIENTED DESIGN of ECRIS Optimized scheme (single-pass absorption) of microwave launching in the WEGA stellarator at MPI -Greifswald

Overcoming the current limits of ECRIS

- We are now able to see what happens into the plasma and to model through numerical simulations how it could be happen differently (and in a better way)
- Microwave absorption oriented design is needed: Power deposition into the plasma must be performed in a highly controlled way
 Single pass absorption

Some ideas

- STILL IN ECR-heating paradigm: are cylindrical shapes of the plasma chamber still mandatory ?
- OVERCOMING ECR-heating paradigm: on-purpose design of microwave launchers for inner plasma modal conversion

Some questions....

Does exist an "ECRIS fine structure" with respect to magnetic field and RF frequency tuning?
D. Mascali et al., Rev. Sci. Instrum. 2014

Evidences of plasma instabilities when tuning B

Evidences of strong fluctuations with the RF frequency correlated to X-ray emission

Some questions....

Does exist an INTERPLAY between the plasma structure and the beam shape, brightness, emittance?

single mode distrib.

D. Nicolosi et al. ICIS-15, New York City

L. Celona et al., Rev. Sci. Instrum. 2008

- Does the plasma distribute uniformly?
- Are electrons of different energy domains merged each other or not?

Non-intrusive plasma diagnostics methods

evaluation under different operative parameters

Experimental setup for simultaneous measurement of density, temperature and CSD

Three detectors were used for a broad characterization of the EEDF:

- HpGe for "hot electrons" E>30 keV
- SDD for "warm electrons" 2<E<30 keV
- CCD camera for imaging and 2D resolved spectroscopy 1<E<10kEV</p>

(SDD) F.T.E. study

Very Strong correlation (!!!) between Ar4+ current, X-ray flux and modal density

Same number of "peaks", but with upshifted frequency (plasma effect).

Strong correlation among: (i) Ar4+ current, (ii) SDD counts/sec. and (iii) e.m. modal densitydistribution

SDD/HpGe - Data Analysis 100 160 mm Air transmission coeff. -- Kapton transmission coeff. 80 Transmission [% -Si-Pin Efficiency 60 40 20 **Global Quantum Efficiency of the SDD setup** 1 0^L 0 20 30 5 10 15 25 Energy [keV] Ar peaks 10⁸ SDD collected spectrum QE normalized spectrum 10⁶ Fe/Cr peaks counts 10⁴ 10² 10⁰ 10 20 25 0 5 15 Energy [keV] Spectral renormalization for the SDD setup

SDD - Data Analysis

Analysis procedure consists in evaluating the **Experimental Emissivity** after ε_g calculation, that must be then compared to the **Theoretical Emissivity** by fitting procedure.

X-ray imaging

- X-ray imaging: single frame acquisition, up to 30-40 sec. needed, no energy information;
- Photon Counting mode: from 10⁻⁵ to 0.3 sec., depending on the ROI.
- A Staint-Steel grid was placed at injection edplate allowing plasma inspection
- Spatial resolution is high enough to find the mesh in X-ray images

From a general inspection of the pictures, it is clearly visible the structure of the plasma:

- 🛎 the hole in the near axis region
- the branches due to the electrons escaping from the confinement
- he hot spots due to lost electrons producing bremsstrahlung radiation when impinging on the chamber walls.

2D resolved X-ray spectroscopy

Preliminary tests carried out with a multi-metals matrix:

energy resolutionspatial resolution

Plasma inspection by energy filtering

Plasma inspection after energy filtering 12.84 GHz - distribution at different energies (equalized pseudocolor maps) E<1.5 keV 1.5<E<2.5 keV 2.5<E<3.5 keV - Ar ions more ions in off-pole regions structures in the "arms" Whole plasma E>6.5 keV 3.5<E<6.5 keV hot electrons imping in small spots on walls

Plasma inspection after energy filtering

12.92 GHz - distribution at different energies

(equalized pseudocolor maps)

Analysis of plasma morphology

Arions - 13.24 GHz

Comparison with self-consistent simulations

Comparison with self-consistent simulations

$$\overline{\overline{\epsilon}} = \epsilon_0 \overline{\overline{\epsilon}}_r = \epsilon_0 \left(\overline{\overline{\epsilon'}} - i\overline{\overline{\epsilon''}}\right) = \epsilon_0 \left(\overline{\overline{I}} - \frac{i\overline{\overline{\sigma}}}{\omega\epsilon_0}\right)$$
$$= \epsilon_0 \begin{bmatrix} 1 + i\frac{\omega_p^2}{\omega}\frac{a_x}{\Delta} & i\frac{\omega_p^2}{\omega}\frac{c_z + d_{xy}}{\Delta} & i\frac{\omega_p^2}{\omega}\frac{-c_y + d_{xz}}{\Delta} \\ i\frac{\omega_p^2}{\omega}\frac{-c_z + d_{xy}}{\Delta} & 1 + \frac{i\omega_p^2}{\omega}\frac{a_y}{\Delta} & i\frac{\omega_p^2}{\omega}\frac{c_x + d_{yz}}{\Delta} \\ i\frac{\omega_p^2}{\omega}\frac{c_y + d_{xz}}{\Delta} & i\frac{\omega_p^2}{\omega}\frac{-c_x + d_{zy}}{\Delta} & 1 + i\frac{\omega_p^2}{\omega}\frac{a_z}{\Delta} \end{bmatrix}$$

Full-3D non homogeneous dielectric permittivity Tensor depends on local density and B-field

$$\nabla \times \nabla \times \boldsymbol{E} - \frac{\omega^2}{c^2} \overline{\overline{\epsilon_r}} \cdot \boldsymbol{E} = 0$$

Wave equation with tensorial permittivity

Meshing the integration domain: tetrahedrons size is reduced in proximity of the ECR surface, accounting for resonance.

Searching self-consistency

Plasma shape at different energy domains

12.84 GHz

Cold Electrons E<1 keV concentration in the near axis region

Warm electrons 2 keV<E<30 keV bright annulus with intense spots in off-pole region

Hot electrons E>30 keV broad annulus well inside the resonance layer

Comparison to self-consistent simulations 12,92 GHz

Experimental result Ar-fluor. 3 keV

Simulations - warm electrons at 2<E<30 keV

- Argon ions occupy far-from-poles positions: from comparison to simulations it comes out there warm electrons (having enough energy for ionisation and excitation) are placed
- Next step: comparison of two frequencies

Comparison to self-consistent simulations 12.84 + 12.92 GHz

Achievements and Perspectives

We are now able to see what happens into the plasma and to model through numerical simulations how it could be happen differently (and in a better way)

Microwave absorption oriented design is needed: Power deposition into the plasma must be done in a highly controlled way
Single pass absorption

Some ideas

- STILL IN ECR-heating paradigm: are cylindrical shapes of the plasma chamber still mandatory?
- OVERCOMING ECR-heating paradigm: on-purpose design of launchers

Experimental observation shows a non-linear growing of plasma temperature and density, with a JUMP above a certain threshold of the RF power.

From optical to -ray inspection the X-ray pin-hole camera

Optical imaging

A high brightness strip appears due to electrons impinging on the chamber walls (bremsstrahlung through the stainless steel walls)

gas:Argon pressure:3*10-4 mbar RF power:100W 100 frames -1sec exposure for each one Images in the optical window, taken through an offaxis DN40 flange, evidence the generation of a high-brightness annulus surrounding a dark hole.

X-ray imaging evidences that the pumping power is deposited in the annulus, where the energetic electrons are generated

Transversal reconstruction of the plasma structure in X-ray domain (1-30 keV).

Plasma chamber

Probing the plasma density in all the energy domains

VESPRI

VEry Sensitive evaluation of Plasma density by micRowave Interferometry

Probing the plasma density in all the energy domains

Classical Scheme of Interferometer

How to calculate the density n of the plasma

$$\Delta \varphi = \frac{\omega}{c} \left[1 - \left(1 - \frac{\omega_p^2}{\omega^2} \right)^{\frac{1}{2}} \right] L \implies \omega_p^2 = \frac{4\pi ne^2}{m\varepsilon_0}$$

In plasmas the phase variation depends on the " natural plasma frequency"

The plasma frequency depends on the density Microwave interferometry measures plasma density through a measurement of phase shift.

The main challange: "downsizing"

ECR ION Source: extremely compact plasma machine

Probing the plasma density in all the energy domains

Limited ECRIS access probing port

Multi-paths introduce spurious signals

Drawbecks

Interferometry in ECRIS: "Sizing" of the different tools

Parameters	19 4 1 10 2 10 4 1 1 10 10 10 10 10 10 10 10 10 10 10 10	Values	
Frequency MIN	f _{min}	20 GHz \longrightarrow down to 18 GHz	
Frequency MAX	f _{max}	24.5 GHz \longrightarrow up to 26 GHz	
Frequency CENTRAL	f	22 Ghz	
Wavelength	λ	13 mm	
Horn aperture radius	R_horn	12.5 mm	
Standard WG radius	R_guida	5.03 mm	
	l _{opt}	16 mm	
	L_horn _{opt}	9.57 mm	
$l = \frac{(d)^2}{3\lambda}$	$L_{horn} = l\left(1\right)$	$-\frac{R_{guida}}{R_{horn}}\Big)$	

Interferometry in ECRIS: Mechanical assembly

Dimensions :

- 2.5 cm diameter (DN 25)
 Vacuum:
- 8 µm layer of Kapton

Interferometry in ECRIS: antennas charactetization

One horn is xed and the other one is placed on a plywood rod, rotating at 3.2 deg steps, for each angle was measured the intensity of the transmitted signal

Interferometry in ECRIS: the frequency sweep method

The method is based on the frequency shift of the beating signal given by the superposition of the reference leg plus the plasma leg waves.

The beating frequency cab be fixed as long as the ramp relation "freq. vs. time" is chosen in the following way:

$$\omega_{B_0} = \frac{\partial \omega}{\partial t} \left(\Delta L \frac{\partial k_g}{\partial \omega} + \frac{2a}{c} \right) = \text{constant}$$

Rapidly increasing frequency produces a beating whose $S(\omega(t))$ shape function assumes the following form:

$$S(\omega) \propto 2A^2 \cos^2 \left\{ \left[\Delta L \sqrt{\omega^2 - \omega_c^2} + \int_{-a}^{a} \sqrt{\omega^2 - \omega_p^2(l)} dl \right] / 2c \right\}$$

The presence of plasma (accounted by the plasma frequency w_p) only shifts the beating frequency, while multipath introduce spurious components in the spectrum

Interferometry in ECRIS: the frequency sweep method

• Only one frequency is visible, corresponding to the beating signal.

Reference signal: Waveguide Probing signal: free space

Beating signal component

Interferometry in ECRIS: the calibration phase

Numerical modelling of EBN-heating Displacement of resonances and cutoffs

"Microwave-absorption-oriented" design

Flexible Plasma Trap for modal conversion now under assembling at LNS

Boosting plasma density in a Two-Pumping-wave Scenario **B**-field start with one frequency in density order to establish a proper 7 GHz density profile 14 GHz Launch a second wave for modal conversion and **B**-field density second harmonic heating 7 GHz y the modal conversion is a density-magnetic field profiles dependent process -> mastering plasma structure is mandatory for conversion optimisation

Mechanical Implementation at LNS

Phased waveguide array of two elements

MW component procurement completed

- FWT ampl. 13.75-14.5 GHz
- Power divider
- Phase shifters
- flexible waveguides

Two-waveguides array for m.w. Launching

Microwave launcher Antenna assembly

Mechanical Implementation at LNS

ARRAY of two waveguides

A new setup developed at LNS for fundamental studies: measurements about OXB conversion driven by the new launcher are now ongoing

Thank you for you kind attention!