

Experience with a High Energy and High Intensity Cyclotron

Freddy Poirier (Arronax/CNRS)

On behalf of the accelerator group

CYCL13: "On-Going operations with the cyclotron C70", MOPPT010

ARRONAX: Accelerator for Research in Radiochemistry and Oncology at Nantes Atlantique.

IPAB march 2016

High Energy and High Intensity (HEHI)?

- My students asked for comparison between accelerators.
 - And here is a tentative map that I show
 - similar to the HEP european strategy map of 2013 for accelerators
 - Rather incomplete

Proton Cyclotrons and Linacs for Radio-isotopes

- Public Interest Group (GIP):
 - Public research institute, private accounting
 - Research through collaboration
 - Provide also beam time for research
- Small team: 34 full time equivalent
 - 11 in the accelerator group (not every one full time)
- Activities:
 - Produce <u>radionuclides</u> for research in <u>nuclear medecine</u>
 - Radiochimistry/radiobiology research
 - Physics research (staked foils, pixe/pige)
 - Training and education
 - Also an industrial production site for medical needs

- Public Interest Group (GIP):
 - Public research institute, private accounting
 - Research through collaboration
 - Provide also beam time for research
- Small team: 34 full time equivalent
 - 11 in the accelerator group (not every one full time)
- Activities:
 - Produce <u>radionuclides</u> for research in <u>nuclear medecine</u>

ARRONAX

F.Haddad (Arronax)

Motivations for radionuclides

There is a demand for **radionuclides**:

- with various Half-lives: to match with vector distribution time in targeted therapy
- with various **decay radiations**:

imaging / therapy

short range High LET vs long range Low LET (Linear Transfert energy)

- with various Chemical properties
- produced via generator (ease the availability)
- To be used for the **<u>Theranostics</u>** approach

Theranostics: treatment strategy that combines **thera**peutics with diag**nostics** Selection of radionuclides that can be used for:

- radiations for both imaging and therapy (^{117m}Sn)
- same element (⁶⁴Cu/⁶⁷Cu, ¹²⁴I/¹³¹I, ...)
- comparable properties (^{99m}Tc / ¹⁸⁸Re)

Radionuclides production : our priority list

– Radionuclide targeted therapy:

²¹¹At (α emitter)

⁶⁷Cu, ⁴⁷Sc (β⁻ emitters)

- Dosimetry prior therapy :

Radionulide pairs β^+/β^- : ^{64/67}Cu, ^{44/47}Sc

- Imaging :

Cardiology: ⁸²Sr/⁸²Rb Oncology: ⁶⁸Ge/⁶⁸Ga Hypoxia : ⁶⁴Cu + ATSM Immuno–PET (⁶⁴Cu, ⁴⁴Sc, ...)

-Neutron production for particle activation: ¹⁶⁶Ho

Radionuclides production : our priority list

Projectile - Radionuclide targeted therapy: **Alpha** ²¹¹At (α emitter) 67 Cu, 47 Sc (β⁻ emitters) **Proton** - Dosimetry prior therapy : **Deuteron**/ Radionulide pairs β^+/β^- : **64/67**Cu, **44/47**Sc proton - Imaging : Cardiology: ⁸²Sr/⁸²Rb Proton Oncology: ⁶⁸Ge/⁶⁸Ga Hypoxia : ⁶⁴Cu + ATSM Deuteron Immuno–PET (⁶⁴Cu, ⁴⁴Sc, …) proton -Neutron production for particle activation: ¹⁶⁶Ho

The existing facility

6 experimental vaults

4 vaults connected through a **pneumatic system** to hot-cells

5 dedicated lines of hot cells for chemical treatments

2 lines in a sterile environment

The existing facility

6 experimental vaults

4 vaults connected through a **pneumatic system** to hot-cells

5 dedicated lines of hot cells for chemical treatments

2 lines in a sterile environment

ARRONAX

Laboratories available for research: Quality control, metrology, Radiochemistry, biology; radiolabeling,...

The existing facility

And the accelerator itself

6 experimental vaults

4 vaults connected through a **pneumatic system** to hot-cells

5 dedicated lines of hot cells for chemical treatments

2 lines in a sterile environment

Laboratories available for research: Quality control, metrology, Radiochemistry, biology; radiolabeling,...

Some important beam characteristics for radioisotopes production

- For us, end-of-line users want a beam with:
 - Good Stability with a high mean intensity
 - High integrated intensity is required in the end
 - Possibly over long hours
 - Smoothness for the beam:
 - In time: less possible peaks and breakdowns eg thermal stress minimised
 - Precision (to a certain level) at the target location
 - In position (w/wo wobbling)
 - In size
 - In energy to be at the right cross-section for production
- For research users, it's tighter usually
- In accelerator terms, the 7 basic beam characteristics are an important knowledge, also with our industrial machine and even more if you are at the limits on the target:
 - <x>,<x'>,<y>,<y'>
 - <E>
 - $-\Delta t$
 - <|>

Cyclotron Characteristics

- C70 Cyclotron prototype build by IBA:
 - Isochron cyclotron with 4 sectors
 - RF: 30.45 MHz
 - Acceleration Voltage: 65 kV
 - Max magn. field : 1.6T
 - Max kinetic energy/n: 30-70 MeV
 - Normalised emittance before extraction: $\gamma \epsilon_x = 4\pi$ mm mrad (simulation)
- Main additional elements:
 - 2 Multiparticle sources.
 - Multicusp (H-,D-) with multiple magnets, 5mA max.
 - Supernanogan ECR ion source (He2+,HH+)
 - Injection: Series of magnetic elements (glaser, steerer, quad.) on the top of the cyclotron and finally the spiral inflector

Beamlines

Operationnal use

7.2 10⁷ part/bunch

• Large range of intensity and energy:

- 7 orders of magnitude of intensity
 - Runs for Radio-isotopes at high intensity and high integrated intensity
 - R&D runs \rightarrow Precisions in operation
- Several beamlines in use and bunches frequencies variation not included here

OR CERTIFICATIO

ARRONAX

Operations

• RF use:

- 5 years of run
- With increasing RF time usage:
 - 2014: 3400 h
 - 2015: 4400 h
 - 2016 (projected): similar
- Including:
 - Runs at 350µA on target (neutronics)→>3500µAh
 - Couple of weeks at twice $100\mu A \rightarrow 42000\mu Ah$

A typical run for radio-isotope (beg. 2015)

Dual mode operation:

- ✓ Here stable run over 98 hours
- ✓ <I>=101.5 eµA, σ_{<i>}=5.4 eµA
- Breakdowns = 1.8% of the overall time
- ✓ Vacuum in the center of the machine $=4x10^7$ mbar
- ✓ Neutral current (H⁰) = 9eµA in 2014 (18µA in 2012)

- Overall Machine operation can change over time
 - Global Instabilities on the beam characteristics
 - Settings
 - Elements (magnets,...)
 - Cooling
- Also Careful checks have to be performed as:
 - Beam at high intensity can lead to
 - Activation of beamlines component
 - Damages of beamlines component
 - Damages inside the machine
 - Beam Impacts the radio-isotopes target
 - Damages to the target

Some exemples

- Energy precision:
 - strippers at extraction indicated discrepancies
 - Checks with machine radial scan and users
 - Solution: recalibration & continuous checks
- Damages:
 - Lossed particles in the beamlines:
 - At location of maximum beamsize: gasket dammaged
 - Solution: protection & measurements (BLM)
 - Target destruction:
 - Peak in intensity due to miss-tuning
 - Solution: procedure and MPS limits
 - Note: This can have a major impact on the cooling facility

Beam transverse size along the line

Peak intensity

Studies at intensity (>10uA)

Are the settings in the machine and beamlines adequate?

- Mapping of the extracted intensity from the machine has shown several region to use/avoid, for the accelerator magnets setting:
 - Included check of isochronicity
 - On-going work for all magnets, history and pilots technics
 - On operation, setting modification accordingly
- Quad-scan to check the beam dimension and setting of the quads and losses along the beamlines

On-going Developments

- New upgrade on the control server \rightarrow done
- Collaboration with IBA for new collimators
- Beam loss monitors (BLM)
 - 1 running prototype
 - On-going extension for several BLM
- Alpha pulsing: on-going work
- For the future:
 - Parallel data acquisition system for cyclotron and several diagnostics follow-up
 - Beamline modification

BIM

Conclusion

- Arronax C70 is up and running:
 - ~5 years of experience
 - Machine is used for very various and wide range of runs/parameters
 - Success in responding to the users needs (happy?)
- Maintenance and interventions are high:
 - New CMMS (maint. Management software) used \rightarrow better tracking
 - 150 interventions/year
 - Specific applied maintenance technics due to activation in place
- Several developments are necessary and being done:
 - Tools for maintenance have to be developed
 - Beam diagnostics are highly needed
 - Looking for specialist and collaboration
- Beam dynamics studies and needs are slowly being addressed
 - First for operational requirements \rightarrow the road is long

Thank You!

The **ARRONAX** project is supported by: the **Regional Council of Pays de la Loire** the **Université de Nantes** the **French government** (CNRS, INSERM) the **European Union**.

Several of these projects are supported in part by the "Agence National de la Recherche", called "Investissements d'Avenir", Equipex ArronaxPlus n°ANR-11-EQPX-0004

Simulation

- Development of simulation with G4beamline, Astra & Transport:
 - General simulation studies
 - Support and confirm Beam transport strategies
 - Benchmark/Confirmation of beam characteristics (beam size, particles losses, emittance,...) + users are in demand of this
 - Extrapolation to high current technique?

particles losses along the beamline

Details close to beamline end

Cyclotron Adaptations

- <u>Alpha pulsing</u>: Deflectors for inter-bunch time modification (He2+/2011-12):
 - Periodic Deflector on the beamline 50 kV @ f_{cyclo}/20
 - Aperiodic Deflector in the injection timed to the period. def.

ARRONAX

Alpha pulsing

- Goal: modify the inter-bunch space from 32.8 ns to ~5sec
- Initial system built by IBA.
 - Based on a 3kV chopper in the injection and a 50kV deflector in one beamline
- System adapted to new users specification: \rightarrow bunch train
 - Drive the chopper to allow start/stop modes
 - Modify the electronics/software

´ARRONAX

Diagnostics I

The main diagnostics are:

ARRONAX

- Current measurements (Imean):

- On the 4 individual fingers of the <u>collimators</u>
 → aperture from 10 to 30 mm limiting the
- transverse size right at exit of collimators,
- <u>Faraday cups</u>:

Water cooled layers of titanium /aluminium

- 15kW max (i.e ~210µA at 70MeV)
- <u>Beam dumps</u> combined or not with a current integrator (at very low current)

- Profilers: measures the beam density

- <u>Alumina foils</u>: or thin film foils for location and size measurements at end of line

Diagnostics II

On-line analysis of beam x-y density

- Installed downstream a collimator
- A single wire, frequency 18 Hz (19Hz)
- Helicoidal Radius =
 2.7 cm (5.31)
- Limit (theo.)=150 μA for a 10 mm beam

Alumina foil (AlO3) - thickness 1 mm:

- Installed outside the line, downstream the exit thin kapton (75 $\mu m)$ window
- Check of the center and beam size
- \sim 1nA <I_{moy}< \sim 150 nA for protons and alpha
- Vidikon Camera (radiation hard)
- → Off-line analysis code is developed in GMO, based a Matlab tool from LAL.

Machine studies

- Mostly driven by users needs:
 - Beginning of 2015 at high current,
 - started to have major beamline gaskets and target dammages
 - Exact reasons unknown (→ beam dynamics related studies see later slide)
 - Users wants to have lower intensity/more precise beam in a short time
- The studies spans over:
 - Source studies
 - End-of-line beam characteristics
 - Mapping of the magnets
 - Beamlines beam dynamics studies including quad-scan

Studies at low intensity (<1uA)

Intensity from the source follows a specific pattern (peak, drop and ramp-up) before stabilisation which occurs after several tens of minutes:

- Impact on how early we can do a stable beam
- Impact on how soon we can perform maintenance (exponential decrease kicks-in)

→Adaptation of source filament use (confirmed also with end-of-line users measurements)

Beam stability at low current 20 pA (Dosion – LPC Caen/Arronax team): Intensity Geometry

 \rightarrow 40 µm beam geometric instability: recipe in use validated for this specific use (with strategy of beam blow-up in injection)

