

FLMHOLTZ

GEMEINSCHAFT

Towards 40 A Negative Hydrogen Ion Beams for Up to 1 hour Powerful RF Ion Sources for Fusion

Ursel Fantz for the IPP-NNBI Team

The half size ITER source at the ELISE test facilty

Neutral Beam Injection (NBI) for ITER

Ursel Fantz, p. 2

IPAB2016: March 14-15, 2016

Ion sources in present NBI systems: Example ASDEX Upgrade

Sources for positive ions (> 60% H⁺) at low pressure (~1 Pa) and high power (~100 kW)

μρ

Ion sources – Two concepts

Arc sources

► Hot cathodes (2000 – 3000 K)

- ► DC voltage (≈ 100 V)
- Arc current (1000 A)

Regular maintenance

RF sources

- Inductively driven source
- RF power supply ($\approx 100 \text{ kW}$)
- ► RF frequency 1 MHz

Long lifetime

AUG sources

Positive or negative hydrogen ions?

Ursel Fantz, p. 5

Volume process

$$e^{-} + H_{2} \rightarrow H_{2}(B,C) + e^{-} \rightarrow H_{2}(v) + e^{-} + hv$$
hot electrons
Vibrational excitation
$$cold \ electrons$$

$$e^{-} + H_{2}(v) \rightarrow H^{-} + H$$

Dissociative attachment

High electron density and high pressure

Concept of a tandem source

Problems:

- High co-extracted electron current
- Pressure and thus

Stripping losses in accelerator

 $H^- + H_2 \rightarrow H + H_2 + e$

ITER: **p** ≈ **0.3 Pa** ⇒ 30% losses

Low ion current at low pressure

How to create sufficient negative hydrogen ions at 0.3 Pa?

Volume process dissociative attachment $e^- + H_2(v) \rightarrow H^- + H = j_{H^-} \approx 4 \text{ mA/cm}^2$ **RF** source (2005) j_e/j_H- > 30 Cal. current density [A/m². 00 100 100 00 000 100 0.85 Pa Surface process 0.5 P 0.37 Pa H, H_x^+ + surface $e^- \rightarrow H^-$ Cs evaporation .4 Pa much higher j_H-Cs layer much lower j_e/j_{H^-} no Cs 🖡 low work function 0.4 Pa 0.4 Pa Destruction: volume processes Electron to ion ratio no Cs 🖓 $H^- + e^- \rightarrow H + 2e^-$ **Electron stripping** 10 1.4 Pa 0.37 Pa Mutual neutralisation $H^- + H^+ \rightarrow H + H$ $H^- + H \rightarrow H_2 + e^-$ Associative detachmen .85 Pa or $H + H + e^{-}$ (non-associative) 20 40 60 80 100 120 140 160 180 RF power [kW]

Survival length of $H^- \approx$ few cm

The RF ion source concept for negative hydrogen ions

≈ 10 mT **Filter field** Al_2O_3 ceramic S Cs water cooled Faraday screen oven e (magnets turned by 90°) gas feed : H_2 **Grounded** grid **RF** coil Extraction grid : ~ -15 kV Plasma grid: ~ -20 kV pos. bias: ~ 15 V <----> <-bias plate **Expansion** Driver Extraction **Current density measurements** Source on high potential ► Electrical: j_e, j_{ion} Calorimeter: j_{ion}, beam profile

Co-extracted electrons

In 2007 chosen as ITER NBI reference source.

The RF ion source for ITER NBI

Achievements at test facilities: Status 2011

BATMAN

BAvarian Test MAchine for Negative Ions

Physical parameters

- ▶ j_H- > 30 mA/cm²
- ▶ j_D- > 20 mA/cm²
- ► j_e/j_D- <1
- ▶ 0.3 Pa

* stopped operation in 2011 MANITU*

RADI*

Former RADIal Injector of W7-AS Multi Ampere Negative Ion Test Unit

Long pulse extraction

- ▶ 3600 s 🗸 (H⁻)
- D⁻ operation at reduced parameters

Size scaling

- Scalability
- Plasma uniformity okay

1/2 area ITER source, 4 drivers body 76×80 cm²

Tasks achieved BUT NOT SIMULTANEOUSLY IN ONE LARGE SOURCE

 \rightarrow Task of ELISE within the F4E roadmap towards ITER NBI

1/8 area of ITER source, 1 driver,

body 32×59 cm²

Extrapolation to large ITER source within the F4E roadmap towards ITER NBI

Extraction from a Large Ion Source Experiment

Heating & Diagnostic beam European NBTF (Italy) Neutral Beam Test Facilities

The ELISE test facility

ELISE test facility with a ½-size ITER source

- Provide input for design, commissioning and operation of ITER NBI systems and European test facilities
- Demonstrate ITER parameters in large sources
 - Extracted currents (ions and electrons)
 - Beam homogeneity
- Develop most efficient source operation scenarios

Parameter and targets

Isotope H⁻, D⁻ RF power = 2 x 180 kW in 4 drivers $A_{ex} = 1000 \text{ cm}^2$, uniformity > 90% $I_{ion,acc} = 20 \text{ A}$, $I_e/I_{ion} < 1 \text{ at } 0.3 \text{ Pa}$ $U_{tot} = 60 \text{ kV}$, $U_{ex} < 12 \text{ kV}$ Plasma: 3600 s Beam : 10 s every 120 - 150 s (HV)

The ELISE test facility

ELISE test facility with a ½-size ITER source

- Provide input for design, commissioning and operation of ITER NBI systems and European test facilities
- Demonstrate ITER parameters in large sources
 - Extracted currents (ions and electrons)
 - Beam homogeneity
- Develop most efficient source operation scenarios

Parameter and targets

Isotope H⁻, D⁻ RF power = 2 x 180 kW in 4 drivers $A_{ex} = 1000 \text{ cm}^2$, uniformity > 90% $I_{ion,acc} = 20 \text{ A}$, $I_e/I_{ion} < 1 \text{ at } 0.3 \text{ Pa}$ $U_{tot} = 60 \text{ kV}$, $U_{ex} < 12 \text{ kV}$ Plasma: 3600 s Beam : 10 s every 120 - 150 s (HV)

Source opening after 2 years of experimental phase

Lower Cs consumption than expected

Size scaling: ELISE source performance compared to prototype source at BATMAN

Less magnetic filter field needed
 80 kW/driver should be sufficient

Stable ion currents (within 5%) but high dynamics of co-extracted electrons

Co-extracted electrons limit source performance, in particular in deuterium !

ELISE test facility – Towards long pulses

Record-setting one hour pulse at 0.3 Pa in hydrogen

H⁻ beam on the calorimeter

ELISE test facility – Beam diagnostics

Advanced beam diagnostics

To determine beam divergence and beam homogeneity

- Diagnostic calorimeter with thermocouples, water calorimetry and IR data analysis
- Beam Emission Spectroscopy (BES with 20 LoS)
- ► Tungsten wire calorimeter

W-wires

BES horizontal LoS

Ion source

Grounded grid

Elise W Wire Calorimeter

ELISE test facility – Beam diagnostics

Advanced beam diagnostics

To determine beam divergence and beam homogeneity

Diagnostic calorimeter with thermocouples, water calorimetry and IR data analysis

8

LOS #18

Beam Emission Spectroscopy

BES divergence on LoS #3 (deg)

Achievements of the ELISE Test Facility

Experience in operation of large RF beam sources

- ▶ 2½ years of successful operation
- Inspection and maintenance
- Similar dependencies as in prototype source
- Less Cs consumption as expected
- Lower magnetic filter field needed
- ▶ 80 kW/ driver should be sufficient
- ▶ Beam homogeneity better than 90% ✓

l _{ion,ex}	Pulse	Power/driver
25.5 A	20 s	52 kW
18.3 A	400 s	45 kW
9.3 A	1 h	20 kW

Hydrogen, 0.3 Pa, e/ion < 1

Co-extracted electrons limit source performance, in particular in deuterium !

