

Status of High Intensity Proton Beam Facility at LNL

MARIO MAGGIORE

Outline

- From SPES project to High Intensity Beam Facility
- High Intensity Beam Applications
- Building Overview
- Status of Cyclotron Installation and Commissioning

SPES: Selective Production of Exotic Species

- Flagship of INFN on Nuclear Physics and Astrophysics Research
- 50 Meuro budget fully funded (Alpha and Beta phases)
- It consists of 4 phases:
 - Alpha: Cyclotron (primary beam driver) and High Intensity Beam Deliver
 - **Beta**: RIBs production and Physics at Low and High Energy (Re-acceleration)
 - **Gamma**: R&D on Radioisotope for Medical Application (LARAMED project, partially funded)
 - **Delta**: Neutrons and Applications (TDR under study)
- Construction started in 2010 with Cyclotron and in 2012 with Building
- Completion of SPES Project is expected in 2019

- Cyclotron and beamline under commissioning
- ISOL target on test stand
- HRMS and beam cooler under study

- Charge Breeder ready to be installed
- RFQ injector under study, final design is in progress
- ALPI upgrade is ongoing

An High Intensity Accelerator for doing what

- In 2009 the Cyclotron was chosen as driver of SPES ISOL target to provide high intensity proton beam (700 μA @ 70 MeV)
- Cyclotron: compact and very versatile machine, easy operational and most suitable choice for delivering medium-high intensity beam (50kW).
- This kind of accelerator allows:
 - To provide proton beams at different energy and different current
 - To extract simultaneously two proton beams to be used in separated ways

An High Intensity Accelerator for doing what (cont'd)

- Up to 9 irradiation target points
- 2 ISOL target stations (A6, A4)
- 3 Shielded bunker (RI #1,#2,#3) for High Intensity irradiation
- 4 medium and low intensity target areas (A8, A9, A15)

Beam Cyclotron Sharing

ROOM	BTL name	MAINUSE	MAX ENERGY AND CURRENT BEAM (protons)					
A6	L1	SPES ISOL TARGET 1	40 MeV, 250uA					
A8	L1B	TBD						
A9	L2	NEUTRONS (NEPIR)	35-70 MeV, 50 uA					
A9	L3	NEUTRONS (NEPIR)	TBD (low power)					
RI3	L3b	LARAMED-INFN	35-70 MeV, 200uA					
A15	L3c	LARAMED-INFN	35-70 MeV, low power					
RI1	L4	RADIOISOTOPE PRODUCTION	35-70 MeV, 500-700uA					
RI2	L4b	RADIOISOTOPE PRODUCTION	35-70 MeV, 500-700uA					
A4	L6	SPES ISOL TARGET 2	40 MeV, 250uA					

STATIONS	week 1 week		ek 2	week 3		week 4		week 5		week 6		week 7		week 8		week 9		week 10		
	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current	Energy	Current
ISOL (SPES)	40	250	40	250	ISOL m	ainten.	40	250	40	250	ISOL m	ainten.	ISOL m	ainten.	40	250	40	250		
RI Production	40	≤ 450	40	≤ 450	> 40	> 350	40	≤450	40	≤ 450	>40	> 350	> 40	> 350	40	≤450	40	≤ 450	CYCLOTRON MAINTENANCE	
Other Apps.					> 40	< 350					>40	< 350	> 40	< 350						

M. Maggiore, IPAB 2016 LNL, 14-15 March 2016

The New Building for SPES project

- 4 years to complete the job
- No additional cost respect to the initial budget
- It was a success of public tender management... in Italy

Istituto Nazionale di Fisica Nucleare

KEY-PLAN

• 3 levels :

- -1 floor : heavy shielded section to hold cyclotron and high activation areas (bunkers, ISOL target and RIBs transport)
- 1th floor: services, conventional and special plants, ancillary laboratories and control room
- 2nd floor: offices

INFN Istituto Nazionale di Fisica Nucleare

The Cyclotron

Main Parameters					
Accelerator type	Cyclotron AVF with 4 sectors, Resistive Magnet				
Particle	Protons (H ⁻ accelerated)				
Energy range	35-70 MeV				
Max Current Intensity	700 μA (variable within the range 1μA-700μA)				
Extraction	Dual stripping extraction				
Max Magnetic Field	1.6T (Bo = 1T)				
RF System	nr. 2 delta cavities; harmonic mode=4; f _{RF} =56 MHz; 70 kV peak voltage; 50 kW RF power (2 RF amplifiers)				
lon Source	Multi-cusp volume H ⁻ source; I _{ext} =8mA; V _{ext} =40 kV; axial injection				
Dimensions	Φ=4.5 m, h=2 m, W=190 tons				

Dual Beam Extraction

- Simultaneous extraction of two beams at the same energy
- Extraction energy varies between 35-70 MeV
- Tuning of current of extracted beams from few μA to 700μA (I_{tot} = 700 μA).

Brief Summary of Cyclotron Roadmap

- Supplied (including one beamline) by BEST Theratronics company (CAN) who won the public tender in 2010
- Study and Design started in 2011
- Magnet ready in factory (Ottawa) in 2013 (magnetic field mapping)
- RF cavity system installed on mid 2013
- Ion source and injection line installed in 2014
- First beam injected (1 MeV) in factory on Sept. 2014
- Factory Acceptance Test concluded on Nov. 2014

Cyclotron installation at LNL

Ottawa, Jan 2015, Cyclotron leaving Factory

Legnaro, May 2015, Cyclotron at LNL

BEST and INFN "joint venture"

During the 2015 not only the cyclotron has been Usitive Nazionale di Fisica Nucleare installed...

Cyclotron and beamlines today

Cyclotron performance stated to date

• Magnetic Field Mapping done in Site (LNL) on July shows a good isochronism $|\Delta B/B| < 5 \cdot 10^{-4}$ and negligible values of harmonic content

- Vacuum reaches 7,5·10⁻⁸ torr (no beam) in few hours of pump down
- Amplitude and Phase stability of RF cavities achieve respectively $|\Delta f/f| < 10^{-4}$ and φ ~ \pm 1 deg

Acceptance Test @ 1 MeV : Central Region performance

- On Dec 2015 BEST Company carried out the acceptance test of injection and acceleration up to 1 MeV and 800µA current
- 2 hrs beam dumping on 1MeV probe at 800µA without operator intervention
- Only 2 beam trips (inflector spark and RF) and auto recovery of the system
- Very good performance:
 - Stable beam current : ripple within ±0.4%
 - 13% of injection efficiency (10% requested)
 - Large acceptance of the machine (more than 50 RF deg)
 - 820 μA at 1 MeV for 10 minutes and 900 μA as peak value we get without any problem
 - Ion source performance are good

ito Nazionale di Fisica Nucleare

Low Power Acceleration Test

- On Feb 2016 BEST Company provides the first full acceleration of beam at low power without extraction
- H⁻ beam at 3 μA current was accelerated from 1MeV to 70 MeV with 5MeV step and stopped on the internal radial probe (water cooled).
- No current losses have been detected along the acceleration path
- Vacuum keep low : 9.10⁻⁸ torr
- Final test to prove the beam dynamic at maximum permitted power (700W):
 - 10 μA @ 70 MeV
 - 20 μA @ 35 MeV

Next Steps

- The facility must to be implemented to allow the extraction and the beam transport at full power:
 - Safety and RP issues (labyrinth to access in A1)
 - Cleaning of building
 - Last section of beamline to get A6 bunker
 - Beam dump at 50 kW (R&D and construction by LNL)

 On May, we should start the final commissioning of the machine and beamline at full power

Conclusions

- The SPES project is now entering its construction stage. The project is fully funded and its completion is expected in 2019.
- The high intensity facility whose core is the cyclotron is developing: the implementation of SPES alpha phase is going on and different applications of high intensity beam are in design phase (LARAMED) and under evaluation (Fast Neutron Source program)
- The installation of cyclotron supplied by BEST is concluded and the commissioning of the accelerator and beamline is in progress
- First important test about the central region performance and the acceleration at full energy prove the robust design of the machine and it raises high expectations.
- In 2016 the cyclotron should be fully operational: very exciting perspectives for LNL future in nuclear physics and interdisciplinary research.

thanks

lon source

