

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

Enrico Fagotti (INFN-LNL)

On behalf of MUNES and IFMIF collaboration

- MUNES
 - Project overview
 - BNCT application
 - Nuclear wastes characterization
 - High intensity accelerator status
 - Target status and future perspectives
 - Conclusion
- IFMIF-EVEDA
 - Accelerator status

IPAB2016

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

Main parameters

Accelerator type: LINAC Proton current: up to 50 mA Proton energy: 5 MeV Time structure: up to CW Beam power: up to 250 kW Neutron converter: Be Operative power density on Be target: 700 Watt/cm² Neutron source intensity: 10^{14} s⁻¹ Main application: BNCT Φ_h (E< 0.5 eV) Φ_h/Φ_{bold} K_h (E>0.5 eV) Φ_h/Φ_{bold} K_h

		Graphite Aluminum container Proton beam		$(cm^{-2}s^{-1})$	* th' * total	(Gy·cm ²)	(Gy·cm²)
			LNL neutron source	4.3E+09	0.96	0.33E-13	0.92E-13
Acceleratore line	eare	Heavy water Berillium target Lithium collimator	IAEA recommendations for BNCT	> 1.0E+09	> 0.90	≤ 2.0E-13	≤ 2.0E-13
AB2016	High power low energy	av accelerators for neu	tron production: MUN	VES and IFMIF	EVEDA c	ase	March 2010

Boron Neutron Capture Therapy (BNCT) is an experimental binary radiotherapy which exploits the neutron capture reaction ${}^{10}B(n,\alpha)^{7}Li$ induced by thermal neutrons (<E> = 25 meV). The α -particle and ${}^{7}Li$ recoiling nucleus are high LET and short range (< mean cell diameter \approx 10 µm) particles able to deposit their energy entirely inside the ${}^{10}B$ loaded cell.

In this way the selectivity of BCNT depends on ¹⁰B distribution and not on the irradiation field. This feature makes BNCT a valid option against the diffused tumors Another crucial aspect for the good outcome of the treatment in the availability of ¹⁰B carriers able to realize a selective delivery. The clinically approved molecules are BSH and BPA. Nowaday, the major challenge in BNCT research is the development of more dedicated carriers.

BNCT at Pavia: the TAOrMINA method

 Istituto Nazionale di Fisica Nucleare

The therapeutic concept is based on the irradiation of the isolated, previously ¹⁰BPA-infused organ in a neutron field where neutrons coming from all directions can irradiate the whole liver

After BPA infusion the liver is removed from the patient

It is washed and put into 2 teflon bags

and then put into a teflon container

and irradiated into the reactor

Two terminal patients affected with colon adenocarcinoma liver metastases were treated in Pavia with the TAOrMINA method between 2001 and 2003. In both cases, about 10 days after treatment the CT scanning evidenced the liver in normal condition while the adenocarcinoma metastases appeared in a necrotic state.

Figure 6. Sequence of CT images of the liver on a cranial (above) and a caudal (below) level in the first patient subjected to BNCT. Evolution at different times of the metastases towards necrosis with final substitution by normal hepatic tissue. (a): pre-operatively; (b): at 7 days, (c): at 6 months; (d): at 12 months after the procedure.

Nuclear waste characterization

- Part of the management of radiactive waste produced in Italy by industrial research and medical processes is analyzed by the so called Passive/Active Waste Assay System (PANWAS).
- It uses neutron differential die-away technique to quantify the fissile content (²³⁵U, ²³⁹Pu etc.)
- Uses a pulsed neutron source (sealed D-T tube, 10⁶ n/pulse in 10 us 100 Hz) and He3 neutron detector.
- With MUNES (10⁹ n/pulse in 10 us 100 Hz, neutron average energy 1.2 MeV against 14) the sensitivity to Pu contaminiation can be dramatically improved.
- Present sensitivity is to about 1 mg of Pu on a barrel of 400 liters, 1500 kg) 0.1 mg has to be guaranteed for disposal (the limit is 0.1 bq/g, and Pu natural radioactivity is 2 Gbq/g, 10^-10 in mass

WM'06 Conference, February 26-March 2, 2006, Tucson, AZ

High Intensity Accelerator Status

Proton Source

PS developed at LNS (2000)

PS optimized at LNL with magnetic shielding (2007)

STATUS

 $I_{p} \approx 45 \text{ mA}$ E = 80 KeV $\varepsilon_{n,rms} < 0.1 \text{ mm-mrad}$ $\varphi_{b}(z = 200 \text{ mm}) = 34 \text{ mm}$ Beam time structure: CW

Istituto Nazionale di Fisica Nucleare

INFN

NEAR FUTURE

 $\varphi_{b}(z = 200 \text{ mm}) = 10 \text{ mm}$ [New extractor design] [LNL]

Low Energy Beam Transport

LEBT developed at LNL

Fast Emittance Scanner (FES): high resolution qq' rms emittance in less than 2 seconds

STATUS

LEBT ready for assembly with solenoids, pumping system, non interceptive profile and current diagnostics, interceptive profiler and termination FC.

NEAR FUTURE Neutralized transport optimization FGA development LEBT control system upgrade e-trap construction

Istituto Nazionale di Fisica Nucleare

Solenoids developed at LNL

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

March 2016

IPAB2016

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

IPAB2016

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

RFQ: First Segment High Power Test

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

March 2016

INFN

RF Test Stand at CEA

Collaboration agreement between INFN and CEA for TRASCO high power test in CEA Saclay

INFN

Measured Para	ameters	Comments		
Inter-vane Voltage	68 kV CW (1.8 Kilp.)	82 kV (2.2 Kilp.) with 0.4 ms 1.1Hz time structure		
Q ₀	8460	no degradation with RF joint opening		
RF Power diss.	192 kW	80 kW/m		
Freq. detuning (full power)	-238 kHz	thermal elongation of the noses near end plates		
Field flatnes	±2%	same reason		

- Nominal voltage achieved in steady state CW operation.
- 120 % of the nominal voltage achieved in pulsed mode (0.1% DC).
- Power balance requires 900 kW for accelerating 40 mA proton beam up to 5 MeV with 10 % of margin on cavity voltage.

- High power solid state technology is matured to be implemented for hundreds kilowatts power sources
- □ Eight independent 125 kW SS amplifiers (one per RF coupler) will be used as power source for RFQ (first 125 kW RF module ready April 2016)

Advantage respect to high voltage power supply + CW klystron

- Lower capital and operating costs (cost and duration of components)
 > 2.5 M€ power supply + 0.5 M€ klystron VS 2,3 M€ SS power system
- Availability and reliability (no stop operation in case of components failure)
- Absence of high voltages (very important for in-hospital operation)

1. Be-tile brazed cooling pipes with Zr adapters

2. Zr cooling system manifold & collector plates

3. collector plates welding & EDM manufacturing process

4. Half target: final assembling ready for e-beam test

Cooling parameters

160

.

.

Diagnostics

E=20 keV, I=3.0 A; P=60 kW close to parabolic shape; 0.75 kW/cm² 1350 +1000, 15 s-on and 15 s-off; horizontal; as in the converter design; Pinlet =0.3 - 0.5 MPa, w=3.0 l/s, Tinlet=20 oC surface temperature (IR camera)

130

130

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

Number of cycles

Cooling system mechanical fixing

Target position

Main advantages & technological challenges

- better neutron moderating power: neutron beam port performance improvement
- lower prompt gamma yield from neutron converter (contamination from structural materials)
- Assessment of HHF limit for Be target reliability made from a solid Be block

3. EDM cutting of slots between contiguous cooling channels

1. Target shaping from solid Be block machining

2. Drilling to create cooling water channels inside Be-block

4. Half target after cover plates + joining pipes brazing

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

Planned testing condition (half-target): Tsefey facility

- E-beam
- Beam power distribution
- Peak power density in loading area
- Number of cycles
- Target position
- Cooling system mechanical fixing
- **Cooling parameters**
- Diagnostics

P=60 - 40 - 47 kW close to parabolic shape; $0.5 - 0.6 - 0.7 \text{ kW/cm}^2$ 1000 +1000 +100 12 s-on 12 s-off; horizontal; as in the converter design; P_{inlet}=0.3 - 0.5 MPa, w=3.0 l/s, T_{inlet}=20 °C surface temperature (IR camera)

IPAB2016

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

Beryllium target test result summary

Test type	Test performed	Main test results	Test passed
Thermal- mechanical	Number of cycles: 2350 ~ 10 times higher than requested (200)• No any visible damage • No cracks observed at metallographic analyses • Reliability better than expected		YES
Radiation damage: neutron	Proper neutron fluence levels (10 ¹⁸ -10 ²⁰ cm ⁻²)	 Material hardening level half than expected Mechanical properties not compromised even at higher dose levels (~0.1 dpa) He bubbles generation observed at higher dose levels only (~0.08 dpa) Lifetime estimation: 3100 hrs (doubled) with respect to design parameters (1600 hrs) =1yr 	YES
Radiation damage: proton	Proton radiation damage preliminary tests (E=5 MeV, I=20µA)	Blistering problem	NO

IPAB2016 High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case M

March 2016

INFN

Proton radiation damage preliminary tests (E=5 MeV, I=20µA)

Evidence of swelling problem caused by low hydrogen diffusion in Be

New target concept

Test of new thin Be target concept to mitigate and hopefully suppress swelling problem.

Characterization of a new heavy watergraphite moderator simulated, assembled and installed on +15° CN beamline for neutron spectrum moderation.

I N F N

Test at CN accelerator

Target type:	Thin Be foil (60 μ m), brazed on a copper substrate. Target is water cooled and assembled in such a way to reduce activation after irradiation.			
Target inclination:	67,85° inclination respect to beam direction.			
Beam diameter on target: 1,1 mm.				
Process description:	5 MeV proton beam interacts with Be foil producing neutrons. Protons reach Be boundary with 2 MeV residual energy and stop in the transition region between brazing alloy and copper.			
Neutron source intensity: 10^{10} s ⁻¹ with 3 µA proton beam.				
Moderator constituents:	- graphite	4014	kg	
	- heavy water	88,5	kg	
	- PTFE	53	kg	
	- bismuth	24	kg	
Neutron flux characterization with Bonner spheres and Si-detectors.				

INFN

Test at CN accelerator

Poster N.02 for more details

- Protons pass through the nominal interface between Be and Cu with 2 MeV residual energy. With this energy, beam is stopped at 9 µm maximum from the Be surface. Considering to have about 20-30 µm brazing region penetrating into Be and into Cu, beam is stopped exactly in the brazing region.
- There is a high risk that beryllium concentration at this level is high enough to have hydrogen accumulation, that is swelling phenomena can appear with high probability.

Results & Next Step

- Neutron source with thermal flux as high as 1,2x10⁶ n/(s-cm²) (>90% respect to total neutron flux).
- Swelling appeared after 43 h irradiation time at 700 Watt/cm² power density.
- Next step: target perpendicular to beam direction (hydrogen production inside copper) but lower (50%) neutron flux.

High technology part of the accelerator was developed.

- RFQ cavity reached outstanding performances during high power test.
- Neutron converter successfully passed thermal-mechanical and radiation damage tests but failed proton test.
- New thin target concept is under test at CN facility at LNL.
- Tender for MUNES accelerator building is on the launching pad.

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

IFMIF Principles

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

IFMIF EVEDA: RFQ system organization

- Responsible A. Pisent
 - Responsible for Padova: A. Pepato
 - Responsible for Torino: P. Mereu
 - Responsible for Bologna: A. Margotti
 - Planning: J. Esposito
 - System Integration at Rokkasho: E. Fagotti
- Physical design : M. Comunian
 - Radio frequency: A. Palmieri
 - High power tests : E. Fagotti
 - Computer Controls: M. Giacchini
 - Vacuum system and techn. processes C. Roncolato
- Mechanics design and construction A. Pepato
 - Engineering integration P. Mereu
 - Quality assurance: R. Dima
 - Module production follow up M. Benettoni
 - Stainless steel components production A. Margotti
 - Cooling system integration G. Giraudo

March 2016

IPAB2016 High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case March 2016

IFMIF-EVEDA: RFQ CHALLENGE

- 650 kW beam should be accelerated with low beam losses and activation of the structure so as to allow hands-on maintenance of the structure itself (Beam losses<10 mA and <0.1 mA between 4 MeV and 5 MeV). (Tolerances of the order of 10-50 um)
- **600 kW RF dissipated** on copper surface: necessity to keep geometrical tolerances, to manage hot spots and counteract potential instability.
- The RFQ will be the largest ever built, so not only the accelerator must be reliable, but also the production, checking and assembling procedure must be reliable
 - Fully exploit INFN internal production capability (design machining, measurement and *brazing*)
 - Make production accessible for different industrial partners
- Last month **RFQ shipped to Rokkasho**.
- Next month will start cavity installation.

IPAB2016

High power low energy accelerators for neutron production: MUNES and IFMIF-EVEDA case

Ion source optimization will continue up to next summer.

- RFQ installation will start next month and it is foreseen to be concluded in November 2016.
- RFQ high power conditioning will start on February 2017.
- First beam from RFQ foreseen before Summer 2017.

