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Motivations
Larger markets can better absorb shocks, and therefore are 
more stable: market integration. 

From an individual perspective diversification lowers risk: 
more contract between banks

But… What happens if we take interactions into account? 

Which are the implications for systemic risk and policy 
making? 
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S. Battiston et al., Sci. Rep. 2, 541 (2012)

DebtRank
DebtRank is an algorithm for propagating shocks in the 
interbank network. 

Shocks refer to distress (opposed to default): a banks becomes 
dangerous before it defaults via devaluation of lender’s claims.

It can be interpreted as an algorithm propagating information 
so that all banks can agree on a common evaluation of assets.

DebtRank is applied by the European Central Bank for  
experimental stress tests and we have an ongoing collaboration 
with the Bank of England.



Shock Propagation
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1) Shock in external assets
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3) Reassessment of interbank claims

4) Further propagation …

?



“Microscopic” approach
Equities and interbank assets are consistent with the balance 
sheet identity at any time step:

Aij(t+ 1) = Aij(0)(1� pj(t)) + (1� ⇢)Aij(0)pj(t)
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Shocks propagate as lenders reassess the value of their assets 
depending on the probability of default of borrowers:

The simplest assumption is that the probability of default is 
equal to the relative cumulative loss:

pi(t) =
Ei(0)� Ei(t)

Ei(0)



The dynamics in-between defaults is linear and one can easily 
study the stability of the banking system.

The crucial quantity is the interbank leverage matrix: Λij(t) = 
Aij(t) / Ei(t).

If |λmax|< 1 the system is stable, otherwise is unstable and at 
least one bank will default. Interbank leverages change after the 
default and a previously unstable system can become stable.

Any (reasonable) dynamics has DebtRank as its linear 
approximation close to the stable fixed point ∆h = 0.  

Stability

MB, S. Battiston, G. Caldarelli, F. Caccioli, PLoS One 10(7), e0134888 (2015)



Unstable Topologies
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Adding nodes
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Wigner-May theorem for an 
ecosystem with n species, interaction 

strength α, and connectivity p. A 
large system is stable if:

n p α2 < 1 

and unstable otherwise.

An interbank system with n banks, 
connectivity p, and mean interbank 

leverage μ/n is stable if:

(n - 1) p μ < 1 

and unstable otherwise. (Entries of 
interbank leverage matrix i.i.d.)

What happens if we simulate a 
growth process starting from a 
finite network in the “wrong” 

phase?



Adding edges
Top 50 EU banks: from a DAG to a complete graph, keeping consistency 

with balance sheets: instability arises already at density equal to 3%

2013 (similar for 2008, …, 2012)
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Bumpy paths

1

3

2

4

5

w

w

w w

6

7 8

w

w

w

w

1

3

2

4

5

w

2w/3

w w

6

7 8

w

2w/3

w

w

2w/3

1

3

2

4

5

w

2w/3

w w

6

7 8

w

2w/3

w

w/2

2w/3

w/2

1

3

2

4

5

2w/3

w/2

2w/3 w

6

7 8

w

w/2

w

w/2

w/2

w/2

w/2

2w/3

1

3

2

4

5

w/2

w/2

w/2 w

6

7 8

w

w/2

w

w/2

w/2

w/2

w/2

w/2

w/2

a: λmax = 0 b: λmax = 0.8165 w c: λmax = 1.1242 w

d: λmax = 0.8907 w e: λmax = 0.8927 w

a

0 1

b c

1.120.82 λmax/w

d e



Conclusions
We establish a framework to assess the stability of the interbank 
network (we can account for recovery too).

We show that standard policy recommendation might not 
capture possible sources of instability.

We prove the analogous of the Wigner-May theorem for the 
interbank network. Adding nodes to an anomalously stable 
network makes it unstable. 

Increasing the interconnectivity of the network while keeping 
the interbank leverage constant is a (possibly bumpy) path 
towards instability.
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