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Overview

• Model and its dynamical phases

• Energy diffusion

• Particle sub-diffusion
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Many-body localization
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where the critical temperature is determined by Eq. (18)
Z T c

0

dT 1 CV ðT 1Þ ¼ Ec. ð22bÞ

The schematic temperature dependence of the conductivity is summarized on Fig. 1.
Therefore, the temperature dependence of the dissipative coefficient in the system shows
the singularity typical for a phase transition.

To prove Eqs. (22) we use the Gibbs distribution and find
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;

where the entropy S (E) is proportional to volume, and E is counted from the ground state.
The integral is calculated in the saddle point or in the steepest decent approximations, ex-
act for V !1. The saddle point E (T) is given by

dS
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.

Taking into account r (E) = 0 for E < Ec we find:

rðT Þ ¼ r EðT Þ½ &; EðT Þ > Ec;

rðT Þ / exp $ Ec $ EðT Þ
T

" #
; EðT Þ < Ec.

As both energies entering the exponential are extensive, EðT Þ; Ec / V, we obtain Eqs. (22).
As we already mentioned, vanishing of the dissipative conductivity at T < Tc means

freezing of all relaxation processes. In particular the microcanonical distribution could
never be established for the closed system. In this respect, the dynamics of the system
resembles the glassy state [19].

To establish the thermal equilibrium in such insulating state requires finite coupling of
the system with the external reservoir (i.e., phonons). The presence of the finite electron–
phonon interaction (as phonons are usually delocalized), smears out the transition, and

Fig. 1. Schematic temperature dependence of the dc conductivity r (T). Below the point of the many-body metal–
insulator transition, T < Tc, r (T) = 0, as shown in Section 6. Temperature interval T > T(in) > Tc corresponds to
the developed metallic phase, where Eq. (17d) is valid. In this regime for the model described in Section 3 r (T) is
given analytically by Eqs. (93)–(99) and plotted on Fig. 10. At T > T(el) the high-temperature metallic
perturbation theory of [15] is valid.
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MBL in spin chains
Soon after BAA some authors have proposed that the same phenomenon 

should be observed in spin chains, even at infinite temperature
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L as L is increased. If the eigenstates are thermal then
adjacent eigenstates represent temperatures that differ
only by this exponentially small amount, so the expecta-
tion value of Ŝz

i should be the same in these two states
for L → ∞. From Fig. 1, one can see that the differ-
ences do indeed appear to be decreasing exponentially
with increasing L in the ergodic phase at small h, as
expected. [Here and throughout this paper, when we
use logarithms, they are base e (“natural”).] In the lo-
calized phase at large h, on the other hand, the differ-
ences between adjacent eigenstates remain large as L is
increased, confirming that these many-body eigenstates
are not thermal.

7 8 9 10 11 12 13 14 15 16 17
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

L

lo
g 

[|m
iα  (

n)
 −

 m
iα  (

n+
1)

 |]

 

 

8.0
5.0
3.6
2.7
2.0
1.0
0.6

FIG. 1: (Color online) The logarithm of the mean difference
between the local magnetizations in adjacent eigenstates (see
text). The values of the random field h are indicated in the
legend. In the ergodic phase (small h) where the eigenstates
are thermal these differences vanish exponentially in L as L
is increased, while they remain large in the localized phase
(large h).

Thermalization requires the transport of energy. In the
present model with conserved total Ŝz, it also requires
the transport of spin. To study spin transport on the
scale of the sample size L, we consider the relaxation of
an initially inhomogeneous spin density:

M̂1 =
∑

j

Ŝz
j exp (i2πj/L) (3)

is the longest wavelength Fourier mode of the spin den-
sity. Consider an initial condition that is at infinite
temperature, but with a small modulation of the spin
density in this mode, so the initial density matrix is
ρ0 = (1 + ϵM̂ †

1 )/Z, where ϵ is infinitesimal, and Z is
the partition function. The initial spin polarization of
this mode is then

⟨M̂1⟩0 =
∑

n

⟨n|ρ0M̂1|n⟩ =
ϵ

Z

∑

n

⟨n|M̂ †
1M̂1|n⟩ . (4)

If we consider a time average over long times, then
the long-time averaged density matrix ρ∞ is diagonal in
the basis of the eigenstates of the Hamiltonian, since a

generic finite-size system has no degeneracies and the off-
diagonal matrix elements of ρ each time-average to zero.
As a result, the long-time average of the spin polarization
in this mode is

⟨M̂1⟩∞ =
ϵ

Z

∑

n

⟨n|M̂ †
1 |n⟩⟨n|M̂1|n⟩ . (5)

Thus for each many-body eigenstate in each sample we
can quantify how much it contributes to the initial and
to the long-time averaged polarization. We then define
the fraction of the contribution to the initial polarization
that is dynamic and thus decays away (on average) at
long time, as

f (n)
α = 1−

⟨n|M̂ †
1 |n⟩⟨n|M̂1|n⟩

⟨n|M̂ †
1M̂1|n⟩

. (6)

In the ergodic phase, the system does thermalize, so the

initial polarization does relax away and f (n)
α → 1 for L →

∞. In the localized phase, on the other hand, there is

no long-distance spin transport, so f (n)
α → 0 for L → ∞.

In Fig. 2 we show the mean values of f for each L vs.
h. They show the expected behavior in the two phases
(trending with increasing L towards either 1 or 0), and
the phase transition is indicated by the crossover between
large and small f that occurs more and more abruptly
as L is increased.
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FIG. 2: (Color online) The fraction of the initial spin po-
larization that is dynamic (see text). The sample size L is
indicated in the legend. In the ergodic phase (small h) the
polarization decays substantially under the dynamics, while
in the localized phase (large h) the decay is small, and this
distinction gets sharper as L increases.

A qualitatively similar finite-size scaling plot also in-
dicating the phase transition is obtained by examin-
ing the many-body eigenenergy spacings as was done
in Ref. [4], and is shown as Fig. 3. We consider

the level spacings δ(n)α = |E(n)
α − E(n−1)

α |, where E(n)
α

is the many-body eigenenergy of eigenstate n in sam-
ple α. Then we obtain the ratio of adjacent gaps as

r(n)α = min{δ(n)α , δ(n+1)
α }/max{δ(n)α , δ(n+1)

α }, and average
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MBL in spin chains
“Ergodicity” here is intended in the sense:
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this ratio over states and samples at each h and L. In
the ergodic phase, the energy spectrum has GOE (Gaus-
sian orthogonal ensemble) level statistics and the average
value of r converges to [r] ∼= 0.53 for L → ∞, while in
the localized phase the level statistics are Poisson and
[r] →∼= 0.39. Note that our model is integrable at h = 0,
so will not show GOE level statistics in that limit, and
this effect is showing up for our smallest L and lowest h
in Fig. 3.
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FIG. 3: (Color online) The ratio of adjacent energy gaps (de-
fined in the text). The sample size L is indicated in the legend.
In the ergodic phase, the system has GOE level statistics,
while in the localized phase the level statistics are Poisson.

The crossings of the curves for different values of L
in Figs. 2 and 3 give estimates of the location hc of
the phase transition. Both plots show these estimates
“drifting” towards larger h as L is increased, with the
crossings at the largest L being slightly above h = 3. In
both cases this “drifting” is also towards the localized
phase, suggesting the behavior at the phase transition is,
by these measures, more like the localized phase than it
is like the ergodic phase.

IV. SPATIAL CORRELATIONS

To further explore the finite-size scaling properties of
the many-body localization transition in our model, we
next look at spin correlations on length scales of order
the length L of our samples. One of the simplest correla-
tion functions within a many-body eigenstate |n⟩ of the
Hamiltonian of sample α is

Czz
nα(i, j) = ⟨n|Ŝz

i Ŝ
z
j |n⟩α − ⟨n|Ŝz

i |n⟩α⟨n|Ŝz
j |n⟩α . (7)

In Fig. 4 we show the mean value [log |Czz
nα(i, i+ d)|]

as a function of the distance d for representative values of
h in the two phases and near the phase transition. Data
are presented for various L. This correlation function
behaves very differently in the two phases:
In the ergodic phase, for large L this correlation func-

tion should approach its thermal equilibrium value. For
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FIG. 4: (Color online) The spin-spin correlations in the many-
body eigenstates as a function of the distance d. The sample
size L is indicated in the legend. The correlations decay ex-
ponentially with d in the localized phase (h = 6.0), while they
are independent of d at large d in the ergodic phase (h = 0.6).
Intermediate behavior at h = 3.6, which is near the localiza-
tion transition, is also shown.

the states with zero total Ŝz that we look at, ⟨n|Ŝz
i |n⟩ ∼= 0

in the thermal eigenstates of the ergodic phase. However,
the conservation of total Ŝz does result in anticorrela-
tions so that Czz

nα(i, j) ≈ −1/(4(L−1)) for well-separated
spins. These distant spins at sites i and j are entangled
and correlated: if spin i is flipped, that quantum of spin
is delocalized and may instead be at any of the other
sites, including the most distant one. These long-range
correlations are apparent in Fig. 4 for h = 0.6, which
is in the ergodic phase. Note that at large distance the
correlations in the ergodic phase become essentially in-
dependent of d = |i−j| at large L and d, confirming that
the spin flips are indeed delocalized. Although we only
plot the absolute value of the correlations, in fact these
correlations are almost all negative, as expected, in this
large L ergodic regime.
In the localized phase, on the other hand, the eigen-

states are not thermal and ⟨n|Ŝz
i |n⟩ remains nonzero for

L → ∞. If spin i is flipped, within a single eigenstate
that quantum of spin remains localized near site i, with
its amplitude for being at site j falling off exponentially
with the distance: Czz

nα(i, j) ∼ exp (−|i− j|/ξ), with ξ
the localization length. In the localized phase the typ-
ical correlation and entanglement between two spins i
and j thus fall off exponentially with the distance |i− j|
(except for |i − j| near L/2, due to the periodic bound-
ary conditions). This behavior is apparent in Fig. 4 for
h = 6.0, which is in the localized phase and has a local-
ization length that is less than one lattice spacing. We
note that in the localized phase, as well as near the phase
transition, the long distance spin correlations Czz are of
apparently random sign.
The data of Figs. 1-4 show the existence of and some of

the differences between the ergodic and localized phases.
We have also looked at entanglement spectra [23] of the
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⌧
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Increasing disorder the level statistics goes from Wigner-
Dyson to Poisson, and level repulsion disappears



Nature of the ergodic 
phase

Conduction is associated with diffusion

� / D Einstein’s relation

Do we have diffusion in the ergodic phase? 

Answer: not for the spin/particle number, in one dimension



Nature of the ergodic 
phase

I(t) ⇠ t�⇣

⇢(r, t) =
1p
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e�r2/Dt

I(t) = 4 < h 0|szi (t)szi (0)| 0i >i

Alet et al 2015

So this is a signal that particles do not diffuse



Nature of the ergodic 
phase

But is this the end of the story?

Particles in amorphous materials sub-diffuse
But energy gets a conductivity!
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Nature of the ergodic 
phase

So we looked at energy diffusion

erg

mbl



Nature of the ergodic 
phase

And we observe that there’s diffusion!

Energy diffusion constant

Check: number diffusion 
constant is zero



• So we get that energy diffuses while 
particles do not

• How to reconcile this with theory?

Nature of the ergodic 
phase


