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Two types of diffusion problems

Klein-Kramers equation Boltzmann transport equation

- In contact with a thermal bath

- Negligible timescale of interaction 

- Rate of crossing a barrier 

- Collisions between particles

- Finite timescale of interaction 

- Most often with U(x)=0 

V (x )



  

Klein-Kramer Equation: some applications

Chemical kinetics

Stochastic Resonance

Transport in biomolecules

Diffusion in solids, periodic U(x)

Dielectric loss spectra of molecular liquids and solids

........

Current-Voltage characteristic of Josephson junctions



  

Klein-Kramer Equation: main features

V (x )

Boltzmann equilibrium as stationary state

Equilibrium achieved through dissipation: Fluctuation – Dissipation theorem

Escape rate: perturbation of equilibrium near the top of the barrier

Escape rate: geometric prefactor and Arrhenius temperature dependence
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Boltzmann Transport Equation: some applications

- SOLID STATE 
Anharmonicity in crystalline solids 

(thermal conducibility) 

-ELECTRONICS 
Electron Transport in Semiconductors - BIOLOGY

Research strategies 

- ECONOMY
Agent-based asset exchange models

- GAS DYNAMICS 



  

Boltzmann equation

∂ f
∂ t

+ v⃗⋅∇⃗ r⃗ f + F⃗⋅∇ k⃗ f=(∂ f∂ t )c

Boltzmann Transport Equation: 
Relaxation Time Approximation

Collision integral

Perturbation of a free Hamiltonian Interaction

In principle: Cross sections of all possible processes
from Fermi golden - rule

In practice:

- Exponential prob of time distribution of the interaction

- Exponential approach to equilibrium: (∂ f i∂ t )c=
f i−f 0,i(T ,E )

τ i(k⃗ )



  

V max

umax
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ẍ=−x+x3
+ηscatt (t c)

ηscatt(t c ): P(Δ t)∼exp (−Δ t / t c)Δ twe randomize velocity every           from

V max=1/ 4 umax=1

The model: Collisions in the standard well 

{
ẋ={ v  if t≠Δ t

w if t=Δ t ,w random from P(w)

v̇=−
∂V
∂ x

P(w)∼
exp (−w2/2T )

√2πT

Boltzmann distribution is 
conserved at all the times:

●

●{
Between collisions: it solves Liouville's equation

At collisions: the reshuffle preserves it

v x=√2(E−V (x ))



  

DWF
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Integral expression for diffusion
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There are no internal maxima, but lim y→ 1+ f (x0 , v 0 , y )=  

+∞ , t c>
1

√2

0 , t c=
1

√2

−∞ , t c<
1

√2

{
Important jumps
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Low temperature mastercurve
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Energy landscape of harmonic spheres
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Adimensional equations: one     for allω



  

Single modes and sum over the modes



  

Sum over the modes: 
Harmonic Spheres Diffusion Constant 
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Low temperatures (supercooled regime)
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High temperatures (liquid regime)
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Summary

Numerical study of a particle in a periodic well potential

What if: finite intercollision time and 
             non-dissipative dynamics 
             (instead of BM)

CROSSOVER in    : {
Kramer-like → Jumps from the top of the barrier

Linear term → Jumps from inside the well

Consequences of:

{
●

●

●

●

{
There is         such that                    for all    
These are the “liquid” modes

●

●

●

Relative contributions to            of 1)Kramer-like  
2)Linear  3)Liquid modes terms are independent 
of all the parameters

                and there is a crossover in    ,  
increasing the temperature, when the last mode        
      becomes liquid

of              at low T 
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