Multi-Photon Information Processing

DHIN

CRAD

0011

Vincenzo Tamma

Institute of Quantum Physics and Center for Integrated Quantum Science and Technology IQST University of Ulm

Xmas Workshop University of Bari, Bari, December 22, 2015

Overview

Multi-Photon✓Quantum SensorsInformation Processing✓Super-Resolution Imaging✓Quantum Computing✓Secure Quantum Communications

Outline:

- N-Photon Correlation Landscapes
- > N-Photon Entanglement Correlations
- Complexity of Multi-Boson Correlation Interference
- Multipath Correlation Interference with a Thermal Source

Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States

Vincenzo Tamma^{*} and Simon Laibacher

Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm,

Multi-Photon Correlation Landscapes

N! interfering N-photon detection amplitudes

$$G_{\{t_d, p_d\}}^{(N)} = \left| \operatorname{perm} \mathcal{T}_{\{t_d, p_d\}} \right|^2 \quad \text{with} \quad \mathcal{T}_{\{t_d, p_d\}} := \left[\mathcal{U}_{d,s} \left(p_d \cdot \chi_s(t_d) \right) \right]_{\substack{d=1, \dots, N\\s=1, \dots, N}} \\ \chi_s(t) := \mathcal{F}[\xi_s](t - \Delta t)$$

Quantum interference with identical photons

Identical photons, perm U = 0 \longrightarrow Destructive Quantum Interference

Photons of different colors: no time-resolved detections

Different colors:

 $\omega_s - \omega_{s'} \gg \Delta \omega \ \forall s \neq s' \quad \longrightarrow \quad$

No multi-photon interference

Photons of different colors: time-resolved detections

Three-Photon "Dip"Quantum Beats

Zooming in on N-photon quantum states and their interferometric evolution

Entanglement correlations: identical photons

$$|W\rangle = \frac{1}{\sqrt{3}} (|H\rangle |H\rangle |V\rangle + |V\rangle |H\rangle |H\rangle + |H\rangle |V\rangle |H\rangle)$$

Photons of different colors: no time-resolved detections

 $\omega_s - \omega_{s'} \gg \Delta \omega \ \forall s \neq s' \longrightarrow$

No entanglement correlations

Time-resolved detections

100 % Bell correlations at equal detection times

THEORY OF COMPUTING, Volume 9 (4), 2013, pp. 143-252

The Computational Complexity of Linear Optics

 $\mathsf{P}(\mathcal{D};\mathcal{S}) = \left| \operatorname{per} \mathcal{U}^{(\mathcal{D},\mathcal{S})} \right|^2$

with

$$\mathcal{U}^{(\mathcal{D},\mathcal{S})} := [\mathcal{U}_{d,s}]_{\substack{d \in \mathcal{D} \\ s \in \mathcal{S}}}$$

Computing permanents harder than factoring large numbers! (Valiant, 1979)

- Identical photons
- Random unitary transformation U
- ≻ M >> N ≥ 30
- Sampling measurements (no time-resolved detections)

Boson sampling with identical bosons hard to simulate classically

From the Physics to the Computational Complexity of Multiboson Correlation Interference

Simon Laibacher and Vincenzo Tamma*

Multi-Boson Correlation Sampling:

> Arbitrary single-photon pure states

$$|\mathcal{S}\rangle := \bigotimes_{s \in \mathcal{S}} |1[\xi_s]\rangle_s \bigotimes_{s \notin \mathcal{S}} |0\rangle_s$$

Sampling measurements based on time and polarization-resolving detections

Multiphoton Interference and Complexity

> N photons distinguishable at the detectors at any time

$$G_{\{t_d, p_d\}}^{(\mathscr{D}, \mathscr{S})} = \Big| \prod_{s \in \mathscr{S}} \mathscr{U}_{\sigma(s), s} \big(p_{\sigma(s)} \cdot \boldsymbol{\chi}_s(t_{\sigma(s)}) \Big|^2$$

No N-photon interference

Multi-Boson Correlation Sampling Trivial!

> N photons indistinguishable at the detectors at given time intervals and polarizations

$$G^{(\mathcal{D},\mathcal{S})}_{\{t_d, p_d\}} \propto \left| \operatorname{perm} \mathcal{U}^{(\mathcal{D},\mathcal{S})} \right|^2$$

Occurrence of N-photon interference

Exact Multi-Boson Correlation Sampling Hard!

Photons of different colors

Different colors:
$$\omega_s - \omega_{s'} \gg \varDelta \omega \; orall s
eq s'$$

Detection integration time: $T_I \ll |\omega_s - \omega_{s'}|^{-1}$

N-photon interference at any detection time:

$$G_{\{t_d, p_d\}}^{(\mathcal{D}, \mathcal{S})} \propto \left| \operatorname{perm} \left(\left[\mathcal{U}_{d, s}^{(\mathcal{D}, \mathcal{S})} \operatorname{e}^{i\omega_s t_d} \right]_{\substack{d \in \mathcal{D} \\ s \in \mathcal{S}}} \right) \right|^2$$

Even Approximate Multi-Boson Correlation Sampling Hard

Boson Sampling Trivial

Multipath Correlation Interference with a Thermal Source

V. Tamma and J. Seiler: arXiv:1503.07369

Summary

N-photon Interference Landscapes

Entanglement Correlations

V. Tamma and S. Laibacher, Phys. Rev. Lett. 114, 243601 (2015)

Complexity of Multi-Boson Correlation Interference

S. Laibacher and V. Tamma Phys. Rev. Lett. **115**, 243605 (2015) V. Tamma and S. Laibacher, Phys. Rev. A **90**, 063836 (2014)

Multipath Correlation Interference with a Thermal Source

