A Self-consistent Study of Magnetic Field Effects on Hybrid Stars

Veronica Dexheimer in collaboration with B. Franzon and S. Schramm

* Motivation

- understand neutron stars and low temperature /high density region of QCD phase diagram
- study effects on the EOS from:
 - hyperonic degrees of freedom
 - deconfinement to quark matter
 - chiral symmetry restoration
 - isospin asymmetry / charge neutrality
 - strong magnetic fields / spin polarization

1 Baryon Density [in units of nuclear matter density]

* Ingredients for EOS

- baryon octet: p, n, Λ , Σ^+ , Σ^o , Σ^- , Ξ^o , Ξ^-
- up, down, strange quark
- nuclear physics constraints:
 - vacuum masses of baryons and mesons
 - pion and kaon decay constants
 - saturation density ($\rho_0 = 0.15 \text{ fm}^{-3}$)
 - binding energy at saturation (B=-16.00 MeV)
 - nucleon effective mass at saturation $(M_N^*=0.67 M_N)$
 - compressibility at saturation (K=297.32 MeV)
 - symmetry energy at saturation (E_{sym} =32.50 MeV)
 - hyperon potentials at saturation (U_{Λ} =-28 MeV, U_{Σ} =5.35 MeV, U_{Ξ} =-18.36 MeV)

* Non-Linear Realization of the SU(3) Sigma Model

- effective quantum relativistic model \rightarrow mean field
- describes hadrons interacting via meson exchange (σ , δ , ζ , ω , ρ , ϕ)
- constructed from symmetry relations → allow it to be chirally invariant → masses from interaction with medium

* Deconfinement

- hadrons + quarks
- effective masses
- 1st order phase transitions or crossovers \hat{a}_{10}
- order parameters σ , Φ
- potential for Φ
 (deconfinement)
- liquid-gas phase transition

Dexheimer et al. Phys. Rev. C 2010

$$m_{b}^{*} = g_{b\sigma}\sigma + g_{b\delta}\tau_{3}\delta + g_{b\zeta}\zeta + \delta m_{b} + g_{b\Phi}\Phi^{2}$$
$$m_{q}^{*} = g_{q\sigma}\sigma + g_{q\delta}\tau_{3}\delta + g_{q\zeta}\zeta + \delta m_{q} + g_{q\Phi}(1 - \Phi)$$

$$U = (a_0 T^4 + a_1 \mu^4 + a_2 T^2 \mu^2)\phi^2 + a_3 T_0^4 \ln(1 - 6\phi^2 + 8\phi^3 - 3\phi^4)$$
⁵

* Local and Global Charge Neutrality

- absence / presence of mixture of phases (surface tension)

- different from liquid-gas:

Hempel et al. Phys. Rev. C 2013

- same charged chemical potential in both phases
- local concentrations of a charge vary during phase transition
- non-congruent features (vanishingly small around critical point)
- negative slope in the pressure-temperature plane

* Perturbative QCD:

- comparison with PQCD data from: Fraga, Kurkela and Vuorinen, Astrophys. J. 2014

- 3-flavor QGP at zero temperature including β -equilibrium and charge neutrality

- band reflects uncertainties

* Magnetic Field in EOS at T=0

- B in the z-direction
- x, y energy levels quantized
- anomalous magnetic moment (AMM)

$$\begin{split} E_{i_{\nu s}}^{*} &= \sqrt{k_{z_{i}}^{2} + \left(\sqrt{m_{i}^{*2} + 2\nu|q_{i}|B^{*}} - s_{i}\kappa_{i}B^{*}\right)^{2}} \\ E_{i_{s}}^{*} &= \sqrt{k_{i}^{2} + \left(m_{i}^{*2} - s_{i}\kappa_{i}B^{*}\right)^{2}} \\ \kappa_{i} \rightarrow \text{coupling strength of baryons} \end{split} \\ \nu_{max} &= \frac{E_{i_{s}}^{*2} + s_{i}\kappa_{i}B^{*} - m_{i}^{*2}}{2|q_{i}|B^{*}} \end{split}$$

* Medium-dependent B

* Phase Transition

- B delays deconfinement (associated with chiral symmetry restoration)
- effect increased by AMM (dotted line)

- equation of state gets stiffer with B
- enough to change mass?
- cannot use TOV !!!

* Maxwell-Einstein Equations (Lorene)

- axisymmetric poloidal magnetic field

Bonazzola et al. Astron. Astrophys. 1993

- anisotropic energymomentum tensor due to:
- pure B contribution
- B in EOS (AMM)
- magnetization
- B in EOS determined self-consistently for different magnetic dipole moments μ

Franzon et al. Mon. Not. Roy. Astron. Soc. 2016 12

* Population

- different compositions for different magnetic dipole moments μ (magnetic field distributions) at fixed baryon mass
- magnetic field decay accompanied by deconfinement?

***** Summary and Outlook

- strong magnetic fields do modify star properties but we cannot use TOV to investigate them!
- magnetic fields modify the structure and population of stars
- population needs to be calculated including magnetic field effects in the EOS
- a complete EOS must include hyperons and quarks
- we are currently including temperature effects in our magnetized EOS

