
Chiral Transport 
Phenomena

Cristina Manuel
Instituto de Ciencias del Espacio (IEEC-CSIC)

Barcelona

Compact Stars in the QCD Diagram 2016 
GSSI and LNGS 

L’Aquila



Outline

• Chiral Magnetic Effect 

• Chiral Transport Equation

• Anomalous Maxwell Equations

• Applications to astrophysics



Chiral Magnetic Effect

In a  B  a misbalance in the population of L/R handed 
fermions leads to an e.m. current 11 to B
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Similarly, in the presence of fluid vorticity 
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• First seen in EW  (Vilenkin, 80)

• Discussed in the framework of HIC Kharzeev, 
McLerran, Fukushima, Warringa, ’08

• Discussed in AdS/CFT Yee, Landsteiner et a,l, etc

• Studied in the lattice Buividovich et al; M Abramczyk 
et al

• Derived in hydrodynamics Son and Surowka

• Derived in kinetic theory (Son and Yamamoto, 
Stephanov and Yin, CM and Torres-Rincon)

• Observed in Dirac semimetals Kharzeev et al, ‘15

Chiral Magnetic Effect



All these ideas here discussed are relevant for 
condensed matter physics

Discovery of  Weyl semimetals and Weyl 
fermions as quasiparticles  

Hasan et al, ’15;  Weng et al,   



Chiral Transport Equation
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In a collisionless case
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Son and Yamamoto, ’12; Stephanov and Yin,  ’12, 
CM and J. Torreses-Rincón, ’14)
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One can reproduce the chiral anomaly equation 
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In a thermal plasma: take into account both particles/
antiparticles to correctly reproduce the chiral anomaly
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The chiral transport equation can be 
deduced simply by computing (for 

m=0) the first quantum corrections 
to the classical eqs. of motion

Semiclassical chiral transport equation 

FW diagonalization

EFT methods



Foldy-Wouthuysen Diagonalization

• The Dirac eq. for a free fermion mixes 
particles and antiparticles d.o.f.

• FW found a representation where these can 
be separated, through a canonical 
transformation

exact for the free theory

approx. for an interacting theory
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O(~)At order [Ri, Pj ] = i~�ij

Give a prescription to deal with products of R, P

Keep unitarity; project over the diagonal 

r = P[U(P,R)R U†(P,R)] = R + P(AR) ,

p = P[U(P,R)P U†(P,R)] = P + P(AP )

Rotate all operators 

P(ARi) = �~E[⌃⇥ (P� eA)]i
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, AP i = e rRiAk(R)ARk

Gosselin, Berard and Mohrbach 2007
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In terms of the rotated variables 
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Massless fermions

Semiclassical equations of motion (e.g. right-handed)
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Fermion dispersion law in an B field is modified 
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EFT approach to the FW 
diagonalization - OSEFT

Separating fermion/antifermion d.o.f. within
 QFT  (HQET, NRQED, LEET, HDET, …)

Describing physics for an almost on-shell m=0 fermion 
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This produces the same FW Hamiltonian we obtained 
before for fermions! 

Some advantages: 

NLO corrections easier to obtain

It can be used for corrections to HTL diagrams
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Transport theory provides a perfect framework to
 study the dynamical evolution of the system, where 

different anomalous effects can be taken into account

Including collisions, in the RTA
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Solve the dynamics for time scales larger than the 
relaxation time
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Anomalous Maxwell 
Equations
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Linked dynamical evolution of  magnetic fields and
chiral fermion imbalance 
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Magnetic Helicity Density 
(or Chern-Simons number)

gives a measure of a non-trivial topology of the B lines

gauge invariant if B=0 on @V (or B n=0 )  



In Fourier modes, using vector polarization vectors  
(e+, e�, k̂)
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it gives account of an asymmetry of L(+)/R(-) polarized 
fields

describing circular polarized waves 



(Integrated) Anomaly Equation 

Expresses  a conservation law of total helicity 
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chiral fermion imbalance can be converted into magnetic 
helicity and vice versa
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helicity flipping rate

We will solve the dynamics for both B and n5 
assuming t ⌧ 1/�f

Note: L/R handed polarized fields evolve differently  with 
fermion chiral imbalance! 

(circular dichroism) 



Assume an initial monochromatic helicity
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Chiral magnetic instability

possible mechanism to generate large B fields with magnetic
 helicity in

cosmological 
scenarios 

neutron stars

heavy ion collisions

Shaposhnikov  et al,  ‘97

Ohnishi Yamamoto et al, ‘14

CM and Torres-Rincon, ’15
Hirono, Kharzeev, Yin, ‘15



Proto-neutron stars

In the process of formation of a neutron star there is
  chiral imbalance: neutronization

p+ eL ! n+ ⌫Le

misbalance among R and L electrons might produce helical fields??

No, as electrons change helicity by scattering off with protons 

Grabowska, Reddy and Kaplan, ‘14

Chirality of neutrinos?



Conclusions

• Chiral transport equation includes quantum 
corrections that allow us to study anomalous 
effects, such as the CME

• Anomalous Maxwell’s equations: magnetic 
helicity and chiral fermion imbalance linked

• Applications of these ideas in different 
systems - could they explain the magnetic 
helicity of neutron stars?


