Rotating NSs/QSs and recent astrophysical observations

ANG LI (李昂)

with R.-X. Xu & H. Gao (Beijing) W. Zuo & J.-M. Dong (Lanzhou) B. Zhang (UNLV) J.-B. Wang (Urumqi) N.-B. Zhang & B. Qi (Weihai) T. Liu (Xiamen)

AL, Dong, Wang, Xu, ApJS 223, 16 (2016) AL, Zhang, Zhang, Gao, Qi, Liu, Arxiv soon

Outline

- Introduction
- Rotating NS/QS configurations
 - Slow: Glitch
 - Fast: Short GRBs
- Summary

Introduction

• NS's inner core? NS/QS?

• Forthcoming NICER, Athena, and LOFT-like missions

Introduction

- Heavy-ion flow investigations
- Ab-initio lattice QCD simulations

D. P. Menezes (2016) JPCS

Unified <u>NS</u> EoS

• BCPM (Barcelona-Catania-Paris-Madrid):

A bulk part obtained from the **BHF** calculations for matter, added in usual ways: the phenomenological surface part, the Coulomb part, 800 the spin-orbit part, the pairing contributions. - BCPM - - BSk21 ••••• BSk20 (Baldo et al. 2008, 2010, 2013, 600 ---- Av18* Pressure [MeV fm⁻³] Sharma et al. 2015) **BSk20,21:** • 400 Skyrme-type unified EoSs from Brussels-Montreal group (Chamel et al. 2011; 200 Pearson et al. 2012; Fantina et al. 2013; Potekhin et al. 2013) 0.2 0.4 0.6 0.80.0

Unified NS EoS

BCPM (Barcelona-Catania-Paris-Madrid):

A bulk part obtained from the **BHF** calculations for matter. added in usual ways: the phenomenological surface part, the Coulomb part, the spin-orbit part, 2.5 the pairing contributions. (Baldo et al. 2008, 2010, 2013, Sharma et al. 2015) 2.0PSR J1614-2230 **BSk20,21: PSR J0348+0432** • (Antoniadis et al. 2013 1.5 Skyrme-type unified EoSs Demorest et al. 2010) from Brussels-Montreal group Z (Chamel et al. 2011; 1.0 Pearson et al. 2012; Fantina et al. 2013; 0.5 Potekhin et al. 2013) 0.010 15 20 0.0

Unified <u>NS</u> EoS

• BCPM (Barcelona-Catania-Paris-Madrid):

A bulk part obtained from the BHF calculations for nuclear matter, added in usual ways: the phenomenological surface part, the Coulomb part, the spin-orbit part, the pairing contributions.

(Baldo et al. 2008, 2010, 2013, Sharma et al. 2015)

• BSk20,21:

Skyrme-type unified EoSs
from Brussels-Montreal group
(Chamel et al. 2011;
Pearson et al. 2012;
Fantina et al. 2013;
Potekhin et al. 2013)

• Shen-TM1

Relativistic Mean field (**RMF**) model (Shen et al. 1998)

Updated <u>QS</u> EoS

CDDM (Confined-density-dependent-mass) model

Fowler, et al. 1981; Chakrabarty, et al. 1989,1991,1993,1996; Peng, et al. 2000 Xia, et al. 2014

CIDDM (Confined-isospin-density-dependent-mass) model Chu & Chen, 2014

D term: linear confinement;
C term: leading-order perturbative interactions
 (or the Coulomb term).

Outline

_ _ _

Introduction

Rotating NS/QS configurations

- Slow: Glitch
 1> Why study glitches?
 2> Vela pulsar and glitch crisis
- Fast: Short GRBs
- Summary

Rotating NS/QS

1> Why study glitches?
A glitch may arise from the inner
crust of a neutron star.

<u>Two-component model</u>

Normally, crustal superfluid are pinned to the crustal nuclei;

Superfluid's angular velocity will lag that of the crust;

Pinned vortices will give crust stress, until vortex unpinned catastrophically (Anderson & Itoh)

From glitch observations to EoS

$$I_n/I \approx 2\tau_c \mathcal{A},$$

where $\mathcal{A} = \frac{1}{t_{\text{obs}}} \left(\sum_{i} \Delta \Omega_{p}^{i} / \Omega_{p} \right).$

The accumulated $\sum_i \Delta \Omega_p^i / \Omega_p$ (×10⁻⁹) as a function of the modified Julian date

From glitch observations to EoS $I_{\rm c}/I \ge 1.6\%$

$$I_n/I \approx 2\tau_c \mathcal{A},$$

where $\mathcal{A} = \frac{1}{t_{obs}} \left(\sum_i \Delta \Omega_p^i / \Omega_p \right).$

PSR	τ_c (kyr)	$\mathcal{A}~(\times 10^{-9}/d)$	I_n/I (%)
J0537-6910	4.93	2.40	0.9
B0833-45 (Vela)	11.3	1.91	1.6
J0631+1036	43.6	0.48	1.5
B1338-62	12.1	1.31	1.2
B1737-30	20.6	0.79	1.2
B1757-24	15.5	1.35	1.5
B1758-23	58.4	0.24	1.0
B1800-21	15.8	1.57	1.8
B1823-13	21.5	0.78	1.2
B1930+22	38.8	0.95	2.7
J2229+6114	10.5	0.63	0.5

Andersson et al. 2012, PRL

of two-component model, because... **Glitch crisis (2012-present)**

 $I_{\rm c}/I \ge 1.6\% \longrightarrow I_{\rm c}/I \ge 7\%.$

$$I_n/I \approx 2\tau_c \mathcal{A},$$

$$\frac{I_n}{I} \approx 2\tau_c \mathcal{A} \frac{\langle m_n^* \rangle}{m_n}$$

Many neurons are entrained by the crust—neutrons move as if they had an effective mass m_n^* ($m_n < m_n^*$).

Allowed NS mass too low !

Andersson et al. 2012, PRL Chamel N., 2013, PRL

Glitch crisis (2012-present) ?

- The amount of superfluid in the <u>crust</u> cannot explain the changes in angular momentum required to account for the glitches.
 Andersson et al. 2012, PRL
 18
 18
 18
 18
 18
 111-FSI
- Uncertainties in EoS and core-crust interface provide enough flexibility (RMF + polytropic interpolation + BPS)

Piekarewicz et al. 2014

Two points to be improved:

- Microscopic NS EoS;
- ➤ Unified NS EoS.

Two points to be improved:

- ➤ Microscopic NS EoS;
- ➤ Unified NS EoS.

ı ≮

- D

Microscopic unified NS EoS BCPM (Barcelona-Catania-Paris-Madrid) (Baldo et al. 2008b, 2010, 2013, Sharma et al. 2015)

 $\Omega << \Omega_{max} \approx \sqrt{GM/R^3}$

Adopting slow rotation approximation for Vela (P = 89.33 milliseconds) (Spherical-symmetry metric + Axis-symmetry perturbation)

$$I = \frac{8\pi}{3} \int_0^R r^4 e^{-\nu(r)} \frac{\bar{\omega}(r)}{\Omega} \frac{(\varepsilon(r) + P(r))}{\sqrt{1 - 2GM(r)/r}} dr$$
$$I_c = \frac{8\pi}{3} \int_{R_c}^R r^4 e^{-\nu(r)} \frac{\bar{\omega}(r)}{\Omega} \frac{(\varepsilon(r) + P(r))}{\sqrt{1 - 2GM(r)/r}} dr$$

2> Vela pulsar structure

AL, Dong, Wang, Xu, ApJS 2016

Mass	Cent.	. Mass			Radius				Moment of inertia		
		core	icrust	ocrust	total	core	icrust	ocrust	total	fraction	
1.0	0.412	0.97	0.032	4.91	12.00	10.47	0.84	0.68	0.905	0.066	
1.1	0.443	1.07	0.029	4.37	11.95	10.60	0.75	0.59	1.031	0.055	
1.2	0.476	1.17	0.026	3.85	11.89	10.70	0.67	0.52	1.162	0.046	
1.3	0.511	1.28	0.024	3.39	11.83	10.77	0.60	0.46	1.297	0.039	
1.4	0.548	1.38	0.021	2.99	11.75	10.81	0.53	0.41	1.437	0.033	
1.5	0.590	1.48	0.019	2.63	11.65	10.82	0.47	0.36	1.581	0.027	
1.6	0.637	1.58	0.017	2.27	11.54	10.81	0.42	0.31	1.729	0.023	
1.7	0.693	1.69	0.014	1.95	11.39	10.75	0.37	0.27	1.880	0.019	
1.8	0.762	1.79	0.012	1.60	11.19	10.64	0.32	0.23	2.035	0.015	
1.9	0.858	1.89	0.0099	1.29	10.91	10.45	0.27	0.19	2.191	0.011	
2.0	1.039	1.99	0.0070	0.92	10.39	10.04	0.21	0.15	2.337	0.008	

Inner crust: Directly related to glitch

Inner crust: Directly related to glitch

 10^{46} Total moment of inertia ---= *₹_₹,*≡ 10^{45} BCPM I, $I_c [g cm^2]$ ----BSk21 •••**A**•••BSk20 --- **-**-- Av18* 10^{44} Crustal moment of inertia 10^{43} 1.0 1.2 1.4 1.6 1.8 2.0 M [M_☉]

AL, Dong, Wang, Xu, ApJS 2016

2> Glitch crisis

Fractional momenta of inertia: Confronted with Vela glitch data

AL, Dong, Wang, Xu, ApJS 2016

Outline

_ _ _

Introduction

Rotating NS/QS configurations

- Slow: Glitch
- 1> Why this related to glitches?
 2> Vela pulsar and glitch crisis
 - \circ Fast: Short GRBs

• Summary

1> Internal X-ray plateau
2> QS (instead of NS) central
engine model

1> Internal X-ray plateau in short GRBs

(Rowlinson et al. 2010, 2013, MNRAS)

21 SGRB plateau sample with SWIFT (2005/01-2015/10) (Gao, et al., 2016, PRD)

Spindown-induced collapse of a NS/QS to a BH

Supramassive NS/QS: Doomed to collapse

AL, Zhang, Zhang, Gao, Qi, Liu, Arxiv soon

Uniformly fast-rotating supramassive NS/QS

from rns code
(Komatsu, et. al. 1989
Cook et al. 1994,
Stergiouslas, at al. 1995)

QS 16 b) a) 3.5 CIDDM ---CDDM1-*-CDDM2-☆-Bhattacharyya, MIT ---+ ~40% Bombaci, 12 NS Logoteta, 3.0 10^{45}g cm^2) BCPM -*-Thampan, 2016 $M_{max}(M_{\odot})$ BSk20 -*-**MNRAS** BSk21 -- *-Shen X 8 APR ----2.5 **18**+20% 2.0 2000 1000 2000 0 500 1000 1500 f(Hz) f(Hz)

AL, Zhang, Zhang, Gao, Qi, Liu, Arxiv soon

Data prepared

AL, Zhang, Zhang, Gao, Qi, Liu, Arxiv soon

$$\frac{M_{\text{max}}}{M_{\odot}} = \frac{M_{\text{TOV}}}{M_{\odot}} \left[1 + \alpha \left(\frac{P}{\text{ms}} \right)^{\beta} \right]; \qquad (1)$$

$$\frac{R_{\text{eq,max}}}{M_{\odot}} = C + A \left(\frac{P}{M_{\odot}} \right)^{\beta}; \qquad (2)$$

$$km = (ms)^{2}, \qquad (2)$$

$$L_{max} = (R_{max})^{2} = a$$

$$\frac{I_{\text{max}}}{10^{45}\text{g cm}^2} = \frac{M_{\text{max}}}{M_{\odot}} \left(\frac{R_{\text{eq}}}{\text{km}}\right) \frac{a}{1 + e^{-k}\left(\frac{P}{\text{ms}} - q\right)}, \quad (3)$$

8	2	$P_{\rm K}$	I _{K,max}	M _{TOV}	Req	α	β	A	В	C	а	9	k
	EoS	(ms)	$(10^{45} \mathrm{g} \mathrm{cm}^2)$	(M_{\odot})	(km)	$(P^{-\beta})$		(P^{-B})		(km)		(ms)	(P^{-1})
	BCPM	0.5584	2.857	1.98	9.941	0.03859	-2.651	0.7172	-2.674	9.910	0.4509	0.3877	7.334
NS	BSk20	0.5391	3.503	2.17	10.17	0.03587	-2.675	0.6347	-2.638	10.18	0.4714	0.4062	6.929
	BSk21	0.6021	4.368	2.28	11.08	0.04868	-2.746	0.9429	-2.696	11.03	0.4838	0.3500	7.085
	Shen	0.7143	4.675	2.18	12.40	0.07657	-2.738	1.393	-3.431	12.47	0.4102	0.5725	8.644
-	CIDDM	0.8326	8.645	2.09	12.43	0.16146	-4.932	2.583	-5.223	12.75	0.4433	0.8079	80.76
QS	CDDM1	0.9960	11.67	2.21	13.99	0.39154	-4.999	7.920	-5.322	14.32	0.4253	0.9608	57.94
	CDDM2	1.1249	16.34	2.45	15.76	0.74477	-5.175	17.27	-5.479	16.13	0.4205	1.087	55.14

MC simulation

	ε	P_i (ms)	$B_p(G)$	η	$P_{\text{best}}(t_b)$
BSk20	0.002	0.70 - 0.75(0.75)	$N(\mu_{\rm Bp} = 10^{14.8-15.4}, \sigma_{\rm Bp} \le 0.2) [N(\mu_{\rm Bp} = 10^{14.9}, \sigma_{\rm Bp} = 0.2)]$	0.5 - 1 (0.9)	0.20
BSk21	0.002	0.60 - 0.80(0.70)	$N(\mu_{\rm Bp} = 10^{14.7-15.1}, \sigma_{\rm Bp} \le 0.2) [N(\mu_{\rm Bp} = 10^{15.0}, \sigma_{\rm Bp} = 0.2)]$	0.7 - 1 (0.9)	0.29
Shen	0.002 - 0.003 (0.002)	0.70 - 0.90(0.70)	$N(\mu_{\rm Bp} = 10^{14.6-15.0}, \sigma_{\rm Bp} \le 0.2) [N(\mu_{\rm Bp} = 10^{14.6}, \sigma_{\rm Bp} = 0.2)]$	0.5 - 1 (0.9)	0.41
CIDDM	0.001	0.95-1.05 (0.95)	$N(\mu_{\rm Bp} = 10^{14.8-15.4}, \sigma_{\rm Bp} \le 0.2) [N(\mu_{\rm Bp} = 10^{15.0}, \sigma_{\rm Bp} = 0.2)]$	0.5 - 1(0.5)	0.44
CDDM1	0.002 - 0.003 (0.003)	1.00 - 1.40(1.0)	$N(\mu_{\rm Bp} = 10^{14.7-15.1}, \sigma_{\rm Bp} \le 0.3) [N(\mu_{\rm Bp} = 10^{14.7}, \sigma_{\rm Bp} = 0.2)]$	0.5 - 1(1)	0.65
CDDM2	0.004 - 0.007 (0.005)	1.10 - 1.70(1.3)	$N(\mu_{\rm Bp} = 10^{14.8-15.3}, \sigma_{\rm Bp} \le 0.4) [N(\mu_{\rm Bp} = 10^{14.9}, \sigma_{\rm Bp} = 0.4)]$	0.5 - 1(1)	0.84

Efficiency related to the conversion of the dipole spin-down luminosity to the observed X-ray luminosity.

Outline

Introduction

Rotating NS/QS configurations

- Slow: Glitch
 1> Why this related to glitches?
 2> Vela pulsar and glitch crisis
- Fast: Short GRBs
 1> Internal X-ray plateau
 2> NS/QS central engine model

• Summary

Summary

AL, Dong, Wang, Xu, ApJS 2016 AL, Zhang, Zhang, Gao, Qi, Liu, Arxiv soon

- Rotating NS configurations (fast/slow) are presented with recently-constructed unified NS EoS;
- Glitch still a "crisis";
- Calculations for pure quark star (QS) are also done;
- Internal X-ray plateau in SGRBs could be a signature of fast-rotating QS, instead of NS.

Thank you very much!

Glitch crisis (2012-present)

Unresolved physics:

- → Pinning force between vortex and lattice (vortex unpin and moving);
- → Core-crust coupling during glitch rising.

Next plans: Binning Force (with

Pinning Force (with Shang, Lv)

The Ginzburg-Landau theory $F_{GL} = \int \left[\frac{\hbar^2 |\nabla \psi|^2}{4m_n} + f(|\psi|^2) \right] d^3r,$ $f(|\psi|^2) = A |\psi|^2 + \frac{B}{2} |\psi|^4,$ (A and B is from BHF+BCS) $\vec{\psi(r)} = \phi(r)e^{im\theta}e^{iqz}$ Column coordinate

To study the whole picture of glitch.

