Supernovae and neutron stars: playgrounds of dense matter and neutrinos

Quarks and Hadrons

K. 'Sumi'yoshi

Numazu College of Technology Japan

Crab nebula

hubble site .org

- Explosive phenomena: wide range of conditions
- Neutrino burst signals: probe inside compact stars

CSOCD@GSSI&LNGS, L'Aquila, 2016/05/27

Numazu near Mt. Fuji

Hot & dense matter in supernova explosions (1) Explosion or not? (2) Neutrino signals with EOS and neutrino to probe exotic phase? **3D** Simulations SN1987A QCD phase diagram **OGP** Supernova ApJ 2012 V **Takiw** aki Mann "Shadow of a Star" hadron Neutrino burst ν Ο Neutron stars Kamiøka, Japan Gran Sasso, Italy (3) Which region in p-T plane?

http://www-sk.icrr.u-tokyo.ac.jp/

https://www.lngs.infn.it/en/lvd

2

Core-collapse SNe: collapse, bounce and explosion

Difficulties: shock wave stalls on the way

- 1. Initial shock energy is used up by Fe dissociation
- 2. No explosion occurs in spherical (1D) simulations

How to revive the stalled shock wave?

- Neutrino heating mechanism
- Multi-dimensional effects

Neutrino heating mechanism for revival of shock Heating by neutrino absorption $v_e + n \rightarrow e^- + p$, Fe core $\overline{\nu}_{e} + p \rightarrow e^{+} + n$ surface Transfer of energy from v Janka A&A (1996) Shock, $E_{v-heat} \sim 2 \times 10^{51} \left(\frac{\Delta M}{0.1 M_{out}} \right) \left(\frac{\Delta t}{0.1 s} \right) erg$ ~100km No explosion by modern 1D simulations Shock Newton+O(v/c) р position_{10³} Relativistic *Trapped* neutr V $\boldsymbol{\mathcal{V}}$ Radius [km] n Proto-**100ms after bounce Neutrino energy/flux** 10 0.1 02 03 0.4 0.5 0 from trapped neutrinos Time After Bounce [s] time [s] Liebendörfer et al. (2000)

Explosions mechanism in 2D & 3D

- Convection, SASI, rotation, magnetic etc - Observations **neutrino-heating with hydro instabilities**

Wang (2002)

Lentz ApJ (2015)

Issues of explosion mechanism

• What is main trigger?

nock radius [km] 2D vs 3D, Low explosion energy?10⁵⁰ erg

- Evaluation of neutrino-heating
- Dependence on nuclear physics

To clarify the mystery we need full simulations

Nuclear Physics

- Equation of state
- Neutrino reactions lacksquareat 10^{5} - 10^{15} g/cm³, ~ 10^{11} K

Astrophysics

- Hydrodynamics
- Neutrino transfer
- **General Relativity**

Supercomputing technology

Numerical simulations of core-collapse supernovae

Huge supercomputing power is necessary

7

K-Computer, Japan

Supernova issues: neutrino transfer

From approximate to exact neutrino-radiation hydrodynamics

Nagakura et al., ApJS (2014, 2016) Sumiyoshi et al., ApJS (2012, 2015)

v-transfer to determine v-heating

2D/3D hydrodynamics + neutrino heating

- Neutrino flux & heating
 - v-trapping, emission, absorption
- From diffusion to free-streaming
 - Intermediate regime is important
 - \rightarrow From approximate to exact

New code solves 6D Boltzmann eq.

$$f_{v}(r,\theta,\phi; \varepsilon_{v},\theta_{v},\phi_{v}; t)$$

Boltzmann eq.

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \vec{n} \cdot \vec{\nabla} f_{v} = \frac{1}{c} \left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

Time evolution + Advection = Collision

Sumiyoshi & Yamada, ApJS (2012)

- Collision Term is tough
 - Energy, angle dependent
 - Stiff, non-linear
 - Frame dependent
 - \rightarrow Huge computation

- Approximations used so far
 - 2D/3D: Diffusion, Ray-by-Ray method
 - (1D spherical: 1st principle calculations)
- Comparison with Ray-by-ray
 - Local v-heating ~20% difference Sumiyoshi et al. ApJS (2015) Background fix

Our code: Neutrino-radiation hydrodynamics Nagakura et al. ApJS (2014, 2016)

- 6D Boltzmann solver + 2D Hydrodynamics + 2D gravity
 - Relativistic effects: Doppler, angle aberration, moving mesh
 - Neutrino transfer in fluid flow (from diffusion to free-streaming)

Non-radial neutrino flux in the whole region cf. Ray-by-ray approx. Figure by Iwakami

First results of long-term evolution

Nagakura, Iwakami et al. (2016)

 $15M_{sun}$

- 2D dynamics depends ρ -profiles of massive stars

11.2M_{sun} Color: entropy, Arrow: Velocity

(RMF-TM1, "extended Shen EOS")

No explosion found in 2D Hydro+Boltzmann

Nagakura, Iwakami et al. (2016)

• No revival of shock in 2 models

Need further study: Nuclear physics, General Relativity?

Supernova issues: Equation of State

effects on explosion?

EOS table for supernova simulations

- Data covers wide range
 - $\rho: 10^{5.1} \sim 10^{16} \,\text{g/cm}^3$
 - $Y_p: 0 \sim 0.65$
 - T: 0 ~ 400 MeV

- Consistent framework
- Experiments of nuclei
- Observations of neutron stars

Models	Framework	Reference	
Nucleon benchmark 1990's~	Skyrme Hatree-Fock Extended Liquid-Drop Relativistic Mean Field	Wolff-Hillebrandt Lattimer-Swesty Shen	LS-EOS Shen-EOS
Nucleon	Relativistic Mean Field	G. Shen, Oertel, Peres	
updates _{2000's~}	Nuclear many body	Togashi, Constantinou	
Nucleon	Relativistic Mean Field	Hempel, Steiner, Fischer	Hempel
updates+NSE	Mixture of nuclei	Furusawa	Furusawa
Nucleon	Relativistic Mean Field	Ishizuka	Hyperon
+Hyperon	Hyperon interactions	Gulminelli, Oertel, Banik	
Nucleon	Relativistic Mean Field	Nakazato	Quark
+Quark	Bag model	Sagert, Fischer	

Based on Oertel, Hempel, Klaehn & Typel (2016)

Comparison of EOS sets: benchmark

• Difference in stiffness & symmetry energy

Comparison of EOS sets: more recent

- Choice of nuclear interaction (stiffness, radius, ...)
- No explosion with various EOS tables

 $11.2M_{solar}$ Steiner et al. (2013)

Hempel (2012)

Supernova profiles at core bounce: t_{pb}=0 ms

 ρ : just above ρ_0 , T~10 MeV, Y_p : not so neuron-rich yet

Sumiyoshi et al. ApJ 629 (2005) 922.

Explosion with quark EOS

Sagert (2009), Fischer (2012)

Neutrino burst to probe EOS

Proto-neutron star vs black hole formation

Supernova neutrinos as a probe EOS

- Proto-NS cools down
 by emitting 10⁵⁷ v in ~20 sec
- a next Galactic SN: $10^4 v$ (SN1987A: 11 v)
- v emitted from hot and dense matter (EOS)

Neutrino bursts after core bounce

• Reflects EOS stiffness and composition

EOS differences appear in proto-neutron stars

Sumiyoshi et al. A&A(1995) H. Suzuki (2005) Proto-NS cooling Simulation started from $t_{pb}=0.4$ sec 24

Supernova v from proto-neutron star

Temperature difference \Rightarrow Average energy difference

Sumiyoshi et al. A&A (1995), H. Suzuki (2005)

More massive stars lead to black holes

- Massive proto-NS to black hole in ~1s
- No display, but neutrino burst
- Chance to see black hole formation
- \bullet Probe of EOS at high ρ and T

BH forming SNv A Galactic case: $10^4 v$

40M_{sun} Sumiyoshi et al., ApJ (2007)

Hyperons appear at high ρ and T

• Exotic phase triggers the re-collapse to black hole

• Probe exotic matter by neutrinos (but for soft EOS) M Hyperon-EOS: M_{NSmax}=1.6M_{sun}

40M_{solar} Typeroll-EO Sumiyoshi et al., ApJL (2009), Nakazato et al. PRD (2010)

Difficult to distinguish?

EOS with NS 2M_{sun} O

Extreme conditions in ρ *-T plane*

Supernova, Black hole formation & Neutron star merger

R. Hurt/Caltech-JP

http://www.nasa.gov/

Supernova explosion (~ $20M_{sun}$) ~ heavy ion collision

Composition from experiments

Furusawa, Fischer

Failed supernovae (~40M_{sun}) black hole formation

• Very high ρ -T just before collapse to black hole

Neutron star merger

- Target of gravitational waves
 Probe of neutron star EOS
- Possible r-process site
 Afterglow (kilonova)
- Hyper-massive neutron star
 - Black hole formation

http://gwcenter.icrr.u-tokvo.ac.jp/

KAGRA

http://www.ligo.org

Abbott et al. PRL (2016)

Hot-Dense, n-rich matter in neutron star merger

0

-20

-40

- Merger of binary NSs $^{Y[km]}_{40}$ - 1.35M + 1.35M $_{20}$
- Rotating hot NS
 - $M \sim 2.6 M_{sun}$
 - Hempel DD2 EOS
 - $M_{max} \sim 2.4 M_{sun}$

Fujibayashi (2016)

density [fm⁻³]

Extreme conditions in explosive phenomena

- Core-collapse supernovae by v-heating in 2D/3D
 - 6D Boltzmann eq. solver & EOS tables to explore
- Neutrino signals to probe EOS and exotics
 - Supernova neutrinos ~20s, black hole forming neutrino ~1s

Wide range of (ρ, T, Y_p) conditions

- 1. Core-collapse supernovae: hot-dense matter
 - 1. Moderate Just above ρ_0 , neutrino trapped matter
- 2. Black hole forming supernovae
 - 1. Extreme condition just before recollapse to black hole
- 3. Neutron star merger & BH forming objects

Compact stars in Kyoto, this fall

Oct. 17 – Nov. 18, 2016 @ Yukawa Institute TP

Muclear Physics, Compact Stars,

and Compact Star Mergers 2016 NPCSM 2016, Oct.17-Nov.18, 2016, YITP, Kyoto, Japan

NPCSM 2016: YITP long-term workshop on "Nuclear Physics, Compact Stars, and Compact Star Mergers 2016", Oct.17 (Mon) - Nov.18 (Fri), 2016, YITP, Kyoto, Japan http://www2.yukawa.kyoto-u.ac.jp/~npcsm/index.cgi

Compact star, dense matter, QCD phase diagram, NS merger & more!

Project in collaboration with

- Numerical simulations
 - H. Nagakura
 - W. Iwakami
 - H. Okawa
 - A. Harada
 - S. Yamada
- Supernova research
 - T. Takiwaki
 - K. Nakazato
 - K. Kotake
 - Y. Sekiguchi
 - S. Fujibayashi

K-Computer, Japan

- Supercomputing
 - H. Matsufuru
 - A. Imakura, T. Sakurai
- EOS tables & neutrino rates
 - H. Shen, K. Oyamatsu, H. Toki
 - C. Ishizuka, A. Ohnishi
 - S. Furusawa
 - S. X. Nakamura, T. Sato

Supported by

- HPCI Strategic Program Field 5
- MEXT and JICFuS
- for K-computer and Post-K machine
- HPC resources at KEK, YITP, UT, RCNP
- K-computer: hp160071, hp160211
- Grant-in-Aid for Scientific Research (15K05093) 39