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Summary of the talk:

1. Introduction to BraneWorld Models (BWM)

2. Stellar structure in BWM
a. Structure equations
b. Boundary conditions
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b. Stellar models for hadronic and quark stars

a. The causal limit
c. Stability of the configurations

4. Conclusions



1. INTRODUCTION TO BRANEWORLD MODELS

o IR



Introduction

o At high enough energies, Einstein’s theory of general relativity breaks
down, and will be superseded by a quantum gravity theory.

o There is as yet no generally accepted (pre-)quantum gravity theory.

o One candidate is string theory. It removes the infinities of quantum field
theory and unifies the fundamental interactions, including gravity. But
there is a price = there should exist several extra dimensions.

We can imagine the universe as a 3D
brane where elementary particles live
embedded in a higher-dimensional space-
time called the bulk (only accessed by

gravity).

The weakness of gravity is due to the fact
that it “spreads” into extra dimensions and
only a part of it is felt in 4 dimensions.




o Due to the complexity of string theory it is very difficult to implement it
in astrophysics and cosmology.

o This motivates the development brane-world models which are
inspired by ideas from string theory, but do not attempt to impose the
full machinery of the theory.

o Thanks to the simplifications introduced in BW models, we can construct
astrophysical and cosmological models and analyse the gravitational
effect of extra-dimensions.

o Two well known examples of brane-world models are:
4 Dvali-Gabadadze-Porrati (DGP). IR modifications to GR
d Randall-Sundrum (RS). UV modifications to GR. Significant
deviations from Einstein’s theory occur at very high energies, e.g.
early universe or gravitational collapse.

In the present work we focus on Randall-Sundrum brane-world models.



Randall Sundrum brane-worlds
see e.g. Randall & Sundrum PRL 1999; Maartens, PRD 2000; Shiromizu et al PRD 2000

» 5-dimensional model: we effectively assume that all the extra dimensions
in the “parent” string theory may be represented by 1 extra dimension.

» In RS models the bulk is a portion of a 5D anti-de Sitter spacetime (AdS,);

i.e. the extra dimension is curved or “warped” rather than flat.

» At low energies, gravity doesn’t “leak” into the extra dimension due to a
negative bulk cosmological constant, A, = - 6/£% where £ is the curvature

radius of AdS..

» The brane gravitates with self-gravity in the form of a brane tension A,

where
BMg

T Anl? ’

» On the brane, the negative A: is counterbalanced by the positive brane

M7} = M3t

tension A.



» The Einstein field egs. on the brane are
G = SWGT/‘f

where G, is the usual Einstein's tensor and the standard T, is replaced by an
effective energy-momentum tensor.

» The effective energy-momentum tensor has the form
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T =T+~ S — ——
ad H +)\ P 8rG

Enw

15t term: standard energy momentum tensor; e.g. for a perfect fluid we
have T, = (p+pluu +ph,

274 and 3 term: include modifications with respect to the standard 4D
Einstein's field egs. (Maartens and Koyama 2010). Two contributions: |ocal
(2" term) and non-local (3™ term).



» Local correction 6S, /A where Ais the brane tension. For a perfect fluid

1

1
S = D pQuuuV + 5 p(p+2p)h,,

o u, is the four velocity, and

o h, =g, +uu isthe projection orthogonal to u,

» Non-local correction g, /8nG where, assuming static spherical symmetry
o T, is a unit radial vector,
o U and P non-local (or dark) energy density and pressure on the
brane

6 (U —P)

b = 871G Auythy + Pryry + 3

P

When the brane tension A= o, both corrections vanish and we recover
General Relativity.



2. STELLAR STRUCTURE IN BWM
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Structure Equations in brane-world models

Germani & Maartens (2001) derived the braneworld generalization of the static stellar
structure equations (TOV). Solving the Einstein’s equations on the brane they found
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To solve the equations we need an equation of state p = p(p) and a relation of the
form P = P(U) relating the nonlocal radiation and pressure.



Boundary conditions

Two of the boundary conditions are the same as for the TOV equations in
GR. Specifically,

at the center of the star the
enclosed mass is zero

at the surface of the object the
pressure vanishes

The remaining boundary condition is determined by the Israel-Darmois
matching condition [GHV V], =0 or [Tpveﬁ ], =0 at the surface 2 of the

object, where [f]Z = f(R*) — f(R7). This leads to
(4rG)?p*(R) + U (R) + 2P~ (R) =UT(R) + 2P (R)

which holds for any static spherical star with vanishing pressure at the
surface.



In BW models, the Schwarzschild solution is no longer the unique
asymptotically flat vacuum exterior. Other exterior solutions are possible depending

on the 5D solution.

Here we focus on a class of models that satisfy the following properties:
e We consider a Schwarzschild exterior solution (Ut = P* = Q).
e We assume P~ = 0, which is consistent with the isotropy of the physical
pressure in the star.

As a consequence, the interior must have a nonvanishing nonlocal energy
density (U~ # 0). Therefore, the boundary condition for U at r=R reads:

(47G)?p*(R) + U~ (R) = 0.

Note on the numerical method: Less straightforward than for standard TOV
equations. Since the boundary condition for U(r) is given at the star's surface, a
shooting method is used in order to match the latter boundary condition.



Limits in the M-R diagram

Typical Mass vs. Radius diagram in GR (Lattimer & Prakash 2012).
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GR — Schwarzschild limit M =0.5R (M=R/2)
Causality — next slides M=~ 0.34R



Causality limit in the mass-radius diagram: GR

o We adopt the following EOS:
QA the well established BPS EOS for p below a fiducial density p,

A a causal equation of state p = p — a above p,

where a = p_ — p,, where p, and p, also fulfill the BPS EOS.

o We integrate numerically the structure equations for different values of a
and identify the maximum masses.
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Based on these maximum masses and their respective radii, the region
excluded by causality in the M — R diagram is given by M =z 0. 34 R.
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3. PRESENT WORK
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Causality limit in the M-R diagram: braneworld model

o We adopt BPS EOS + causal EOS (p = p — a).
o We numerically integrate the structure egs. for different values of a and of
the brane tension A.
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o No maximum mass!! As the mass increases, the radius becomes larger.
o All the curves tend asymptotically to M = R /2 (Schwarzschild limit)
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The causality limit in the braneworld model is coincident with the
Schwarzschild limit.

The shaded region in the M-R plane is forbidden in GR for causal EOSs but
it is not within BW models.




Models for hadronic and quark stars

There is a large amount of high density EOS that fulfill present experimental
constrains.

Our purpose is not making an exhaustive survey of all the available EOSs,
but rather to explore the qualitative properties of hadronic and strange
quark stars in BW models.

We use standard equations of state:

« quark matter: MIT bag model with zero strong coupling constant and massless
quarks = p=3p +4B.

« hadronic matter: non-linear relativistic mean-field Walecka model;

Glendenning & Moszkowski parametrisation GM1; nucleons and electrons; BPS
model at low densities.
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For small masses — same behaviour as in GR: e.g. very small mass hadronic stars
have very large radii, while strange stars follow roughly M ~ R3.

For large mass objects — significant deviations with respect to GR.
v Ataround 1.5 - 2M | the M(R) curves bend anticlockwise as in GR.

v In some cases = local maximum in M(R); then the curves bend clockwise.
v In other cases = no local maximum in M(R). The curves also bend clockwise.

For sufficiently large mass the M(R) curves violate the GR causality limit and then
they approach the Schwarzschild limit asymptotically.



Nonlocal energy density U~(r) versus the radial coordinate r
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» The nonlocal energy density starts at a large negative value and grows
monotonically towards the surface of the star.

» The negative value of U™ means that it acts as an effective pressure helping
against the collapse  — a star with a more negative U~ admits more mass.
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Mass versus central energy density p.
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» For small p_: same behaviour as in GR.

» Remarkable feature: there is a p_ for

which M diverges — The reason is that
for large enough M the nonlocal energy
density U~ supports the star against
collapse.

» The maximum value of p_ increases

with A. In particular, as we approach GR
(A = o) the maximum p_is shifted to .
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STABILITY: necessary condition dM/dp_> 0
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We have two qualitatively different types of M-R curves:
Models with a local maximum in M(R) and M(p_): instability between points M1 and M2.

Models without a local maximum in M(R) and M(p_): necessary condition is always verified.

dM/dp_> 0 not

sufficient condition
for stability.



Stability of radial oscillation modes

A more detailed study = analysis of the radial oscillations (future work).

Instead, we use a criterion that allows to determine the precise number
of unstable normal radial modes using the M(R) curve [Harrison, Thorne,
Wakano & Wheeler (1965); Haensel, Potekhin & Yakovlev (2007)]:

v at each critical point of the M(R) curve one and only one normal
radial mode changes its stability (from stable to unstable, or vice
versa).

v There are no changes of stability associated with radial pulsations
at other points of the M(R) curves.

v One mode becomes unstable if and only if the M(R) curve bends
counterclockwise at the critical point.

v One mode becomes stable if and only if the M(R) curve bends
clockwise at the critical point.
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We have two qualitatively different types of M-R curves
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Case with TWO critical points | ----»=3.583x10’ ' | ]
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o We assume that the lowest density segment (below point M1) is stable for
all radial modes, as it is in the GR case.

o At the critical point (local maximum) M1 the M(R) curve bends
counterclockwise and the fundamental mode becomes unstable.

o At the critical point (local minimum) M2 the fundamental mode becomes
stable again because the curve bends clockwise there. Beyond M2 there
are no more critical points and all the radial modes remain stable.



Case WITHOUT critical points

Again, we assume that for low enough M the stellar configurations are

M/M,,

stable for all radial modes, as it is in the GR case.

Since there are no critical points the whole sequence remains stable for

all radial modes.
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Conclusions

o Within BW models we obtain the usual branch of compact star configurations
already known from GR calculations.

o We also find a new branch that violates the GR causality limit.

it approaches asymptotically to the Schwarzschild limit

it is always stable under small radial perturbations.

stellar configurations of arbitrarily large mass are possible.

supported against collapse by the nonlocal effects of the bulk on the brane.
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o If they exist in Nature, such large mass BW stars may be hidden among the
population of black hole candidates.
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o BH are still possible within BW models. Stellar configurations that
asymptotically approach to the Schwarzschild limit are stable under small
perturbations, but not necessarily under large ones. = a very large mass
braneworld compact star could collapse into a BH if strongly perturbed in a
catastrophic astrophysical event, e.g. in a binary stellar merging.

o The existence of the new branch of large mass objects can be tested through
the observation of M and R of compact stars. If found, such objects could be an
astrophysical manifestation of the existence of extra dimensions.
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