Supernova Neutrinos Detection @ LNGS

Giulia Pagliaroli

Gran Sasso Science Institute

Outline

- Core Collapse SNe Neutrinos
- LVD detector
- Borexino detector
- Halo 2 @ LNGS?
- The GW-Nu Network

Core-Collapse SNe

M(r) [M] SI-burning shell Shock Propagation and v. Burst 0.12sM(r) [M] SI-burning shell Neutrino Cooling and Neutrino-Driven Wind (t ~ 10s) v_{а, в.} т. _{77</sup>а, ц. т} M(r) [M]

- 1. Collapse
- 2. Bounce
- 3. Shock Propagation
- 4. Shock Stagnation
- 5. Accretion
- 6. Cooling PNS

From JANKA et al. Phys.Rev. 442 (2007)

Neutrinos Expectations

Giulia Pagliaroli

CSQCD 2016

Spherically symmetric Garching model (25 M_{\odot})

- Neutronization burst
- Standard Candle

- Not thermal spectra
- 10% of the total energy
- Explosion Mechanism??

- Trapped Neutrinos
- Thermal spectra
- 90% of the total energy

CSQCD 2016

Standard MSW oscillations

Time Integrated Features

Total energy budget Fluences for $\langle E_x \rangle = 1.3 \langle E_{\overline{V}_x} \rangle$ 5×10^{10} $E_{h} = 3 \cdot 10^{53} erg$ $\begin{bmatrix} & 4 \times 10^{10} \\ & 5 \end{bmatrix}$ 3×10^{10} v NC **Equipartition Hypothesis** $\overline{\nu}$ NC $\mathcal{E}_i = \mathbf{E}_h \cdot f_i$ $\stackrel{\scriptstyle \sim}{\xrightarrow{}} 2 \times 10^{10}$ $\stackrel{\scriptstyle \sim}{\xrightarrow{}} 1 \times 10^{10}$ \overline{v}_e NH $f_i = 1/6$ v_e NH 1×10^{10} Fluence at the Earth $\Phi_i = \frac{\mathcal{E}_i}{4\pi D^2} \times \frac{E^{\alpha} e^{-E/T_i}}{T_i^{\alpha+2} \Gamma(\alpha+2)}$ 10 2030 50 40 E_{ν} [MeV] Pinched spectra with $\alpha = 3$ $T_i = \langle E_i \rangle / (\alpha + 1)$

Supernova Neutrinos Detection

LVD: Large Volume Detector

LVD consists of an array of 840 scintillator counters, interleaved by streamer tubes, and arranged in a compact and modular geometry.

Mass (ktons)	1.0
Energy threshold (MeV)	4.0
Scintillator composition	$C_{10}H_{20}$
Protons (10^{31})	9.34
Carbon nuclei (10 ³¹)	4.23
Electrons (10^{31})	34.7
Iron nuclei (10^{30})	9.71

A 21 years Neutrinos Observatory

LVD active mass as a function of time in the period from 1992 June to 2013 December.

	LVD
Total number @ 10 kpc	335
$\bar{\nu}_e + p \rightarrow n + e^+$	87.1%
$\nu_x + e^- \rightarrow \nu_x + e^-$	3.2%
$\nu_e + {}^{12}C \rightarrow {}^{12}N + e^-$	1.1%
$\bar{\nu}_e + {}^{12}C \rightarrow {}^{12}B + e^+$	1.0%
$\nu_x + {}^{12}C \rightarrow \nu_x + {}^{12}C + \gamma_{15.1MeV}$	2.1%
$\nu_e + {}^{56}Fe \rightarrow {}^{56}Co^* + e^-$	3.0%
$\bar{\nu}_e + {}^{56}Fe \rightarrow {}^{56}Mn + e^+$	0.6%
$\nu_x + {}^{56}Fe \rightarrow \nu_x + {}^{56}Fe^*$	1.9%

Detection Probability

The 90% C.L. upper limit on the rate of corecollapse and failed supernova explosions out to distances of 25 kpc is found to be 0.114 y-1.

BOREXINO Detector

Borexino Detector Stainless Steel Sphere External water tank Nylon Outer Vessel Water Nylon Inner Vessel Ropes-**Fiducial volume** Internal **PMTs** Buffer Scintillator Steel plates for extra Muon shielding **PMTs**

	BRY
Mass (ktons)	0.3
Energy threshold (MeV)	0.25
Scintillator composition	$C_{9}H_{12}$
Protons (10^{31})	1.81
Carbon nuclei (10 ³¹)	1.36
Electrons (10^{31})	9.94

DDV

BOREXINO SPECTRUM

Giulia Pagliaroli

Ultrapure Liquid Scintillator SN at 10 kpc

Channel	Color code	Signal	BRX
$\bar{\nu}_e + p \rightarrow n + e^+$	red	e^+	54.1 (49.6)
$n+p ightarrow D+\gamma_{2.2~{ m MeV}}$	purple	γ	46.0 (42.1)
$\nu + p \rightarrow \nu + p$	blue	p	16.0(5.7)
$\nu + ^{12}C \rightarrow \nu + ^{12}C^*$	orange	γ	4.7 (2.1)
$\nu + e^- \rightarrow \nu + e^-$	green	e	4.4 (4.6)
$\nu_e + ^{12}C \to e^- + ^{12}N$	magenta	e	2.0(0.7)
$\bar{\nu}_e + {}^{12}C \rightarrow e^+ + {}^{12}B$	black thin	e^+	1.2(0.8)
$\nu+^{12}C\rightarrow\nu+p+^{11}B$	yellow	p	0.8(0.2)
$\nu_e + ^{12}C \rightarrow e^- + p + ^{11}C$	red dashed	p	0.5 (0.1)

C. Lujan-Peschard, GP and F. Vissani JCAP 1407 (2014) 051

Giulia Pagliaroli

HALO 2 @ LNGS ?

1300 tons of Pb (Opera isotopic abundance 52.4 %)

a Helium and Lead Observatory

"Helium" – because 3He neutron detectors
+
"Lead" – because of high nue-Pb cross sections,
low n-capture cross-section

Electronic SN Neutrinos

CC interaction processes $v_e + {}^{208}\text{Pb} \rightarrow {}^{207}\text{Bi} + n + e^- E_v > 9.26\text{MeV}$ $v_e + {}^{208}\text{Pb} \rightarrow {}^{206}\text{Bi} + 2n + e^- E_v > 24 \text{MeV}$ NC interaction processes $v_x + {}^{208}\text{Pb} \rightarrow {}^{207}\text{Pb} + n E_v > 7.37MeV$ $v_x + {}^{208}\text{Pb} \rightarrow {}^{206}\text{Pb} + 2n E_v > 17.86MeV$

EVENTS NH (IH)	% due to nu_e NH (IH)
212 (169)	85 (81)

CSQCD 2016

MULTI-MESSENGERS with Gravitational Waves

Collaboration:

G.P., E. Katsavounidis, E. Coccia, C. Casentini, V. Fafone, W. Fulgione, F. Vissani, C.Vigorito, G.Testera, C. D. Ott, V. Re, K. Scholberg, M. Gromov, L. Koepke

References:

 Proposal for data exchange among GW detectors: LIGO, Virgo and neutrinos detectors: Borexino, LVD and IceCube

- □ I. Leonor *et al.*, **Class.Quant.Grav. 27 (2010)**
- □ G.P. *et al.*, **Phys.Rev.Lett. 103 (2009) 031102**

GW expectations

Distance Reach

- Super-Kamiokande 's recent "distant" burst search requiring two neutrino events (with energy threshold 17 MeV) within 20 seconds shows a ~18% probability of detecting a SN in M31
- Requiring the coincidence with a GW trigger it is possible to lower the threshold to 8.5 MeV increasing the detection probability to the ~35%

Leonor et al. Class.Quant.Grav. 27 (2010) 084019

Giulia Pagliaroli

Conclusions

- Neutrinos emitted from CCSNe can be fundamental probes to infer about the explosion mechanism
- LNGS shows an interesting dedicated program
- A complete picture can be obtained only by combining different detectors techniques