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PREAMBLE

* This talk will focus on a very small—although arguably very
important—region of the QCD phase diagram

nuclei

Scales in
nuclear matter:

@ momentum scale:

temp’eral.fure

o

Fermi momentum

@ NN distance:

@ energy per nucleon:

@ compression modulus:

quark — gluon phase

critical point

HB
baryon chemical potential
Pr~14 fm~' ~ 2m,,
dnyn >~ 1.8 fm~ 1.3 m;l

E/A ~ —16 MeV
K = (260 + 30) MeV~ 2m,
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OUTLINE

%

Modeling Nuclear Dynamics

* Ab initio Approaches to the Nuclear Many-Body Problem
* The CBF Effective Interaction

* The Fermi Hard-Sphere System as a Testing Ground

> Energy per Particle and Quasi Particle Properties
> Momentum Distribution
> Transport Coefficients

* Nuclear Matter Properties

> Energy of Cold 3-Stable Matter
> Extension to Finite Temperature
> Response to Interactions With Low-Energy Neutrinos

>

Summary & Outlook



MODELING NUCLEAR DYNAMICS

% ab initio (bottom-up) approach: nuclear systems are described as
a collection of point-like particles, whose dynamics are decribed
by the Hamiltonian

2
H:Z;:;+ij+ Z Vijk
K3

Jj>t k>j>i

> v;; provides a very accurate descritpion of the two-nucleon system,
in both bound and scettering states, and reduces to Yukawa’s
one-pion-exchange potential at large distances

> inclusion of v;;i needed to explain the ground-state energies of the
three-nucleon systems

> v;; is spin and isospin dependent, non spherically symmetric, and
strongly repulsive at short distance

> nuclear interactions can not be treated in perturbation theory in the
basis of eigenstates of the non interacting system



Energy (MeV)

*

Quantum Monte Carlo and variational calculations performed
using phenomenological nuclear Hamiltonians explain the
energies of the ground-and low-lying excited states of nuclei
with mass A < 12, as well as saturation of the equation of state of
cold isospin-symmetric nuclear matter

SLi %
Li .

- B0 -
8Li B =
Argonne v g o =
with Illinois-7 X S 7
GFMC Calculations .

|
5]

T
1

|
N
S

o
°

0.1 02 03 04 05
p [fm™]




CORRELATED BASIS FUNCTIONS (CBF)

* Replace the basis states of the non-interacting system with a set
of correlated states

no) =y = 1m0l L g

(nol FTFng)/2 /N,
F=S]] £

G>i

* The structure of the two-nucleon correlation operator reflects the
complexity of nuclear dynamics

fij = Z [frs(rij) + 051 fir(145)Sij] Pst
5,7=0,1
[ _ o p(TiiTii _ ap
s spin — isospin projector operator , S;; = 0’07 (T—(S )
¥
* The shapes of frs(r;;) and f;r(r;;) are determined form
minimization of the ground-state energy



NN POTENTIAL AND CORRELATION FUNCTIONS
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CBF EFFECTIVE INTERACTION

% In principle, the complete set of correlated states can be employed
to carry out perturbative calculations, using the bare nuclear
Hamiltonian

+« However, correlated states are non orthogonal. Owing to this
feature, perturbation theory in the correlated basis involves
serious additional difficulties

% Alternatively, the formalism of correlated basis functions can be
exploited to obtain a well behaved effective interaction, suitable
for perturbation theory in the basis of eigenstates of the
non-interacting system



* Cluster expansion of the Hamiltonian expectation value in the
correlated ground state of isospin-symmetric nuclear matter at
density p = 2k3. /37>

3 k2 ,
<H> = <O|H|O> 527+ (AE[fT57jtT])n
n>2

* The shapes of the frg, fir are determined from functional
minimisation of (H). All relevant cluster terms can be included
using the FHNC/SOC summation scheme

* The CBF effective interaction is defined adjusting the correlation
functions in such a way as to satisfy the relation
3 k%

B _ 2
<H> 5T+<AE[fT57ftT])2:§%+<OFG“/9H|OFG>

% In the case of central state-independent potential and correlation
function

Vir = Y venlri) + ven(r) = — (V) + Fru(r) ()

j>i



» CBF effective interaction obtained from the Argonne vy + UIX
nuclear Hamiltonian
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THE HARD-SPHERE MODEL

The Fermi hard-sphere model: point-like spin one-half particles

oo r<a

v(r):{ 0 r>a

* Valuable model to study properties
of nuclear matter.

* Purely repulsive potential to prevent the
possibility of Cooper pairs formation.

* A simple many-body system to investigate
the validity and robustness of the
assumptions of CBF effective interaction
approach.
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DETERMINATION OF Vg

For the hard-sphere system (HS) f(r <a) =0, lim firy=1

Ve (T)

LIVIOP L r>a

We adjust the range of f(r) in order to reproduce the ground state energy
(FHNC/DMC) at two-body cluster level.
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* defined from (H) in the
correlated ground state

* employed in calculations
of matrix elements
involving excited states.
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THE GROUND-STATE ENERGY
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» The accuracy of the variational results depends on the quality of the trial
wave function.

» Long-range statistical correlations effects in f(r) much larger for v = 2
than for v = 4.

» DMC overcomes the limitations of the variational approach by using a
projection technique on the trial wave function.
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QUASIPARTICLE SPECTRUM
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MOMENTUM DISTRIBUTION v = 4

In comparison with non orthogonal CBF perturbation theory
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of radius a = 0.55/1.33 ~ 0.4 fm.
S. Fantoni and V. R. Pandharipande, Nucl. Phys. A 427(1984)

Virtual scattering processes between strongly correlated particles are mainly
driven by the short-range repulsive core of the nucleon-nucleon interaction. J




LIFETIME AND TRANSPORT COEFFICIENTS

The second order contributions lead to
a sharp increase of m*, which in turn
implies a decrease of the shear viscos-

ity coefficient  and the thermal con-
ductivity .
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BACK TO NUCLEAR MATTER

% Energy per nucleon in isospin-symmetric matter (solid blue line),
pure neutron matter (dashed blue line) and -stable matter (solid
magenta line)

* Calculations carried out at first order in the CBF effective
interaction, derived from the Argonne v + UIX Hamiltonian.

% The effect of three-nucleon forces is accounted for through a
density-depencence of the CBF effective interaction
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My [MeV]

* Nucleon chemical potential (left) and effective mass in units of
the nucleon mass (right), in isospin-symmetric matter (solid
lines) and pure neutron matter (dashed lines). Calculations
performed at first order in the CBF effective interaction
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EXTENSION TO T # 0

* A realistic and consistent description of the properties of hot
nuclear matter will be needed to perform systematic studies of
gravitational-wave emission from protoneutron stars

* Free energy of PNM (left) and SNM (right) at 0 < 7" < 50 MeV
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NEUTRINO INTERACTIONS WITH NUCLEAR MATTER

* Consider, for example, a neutral current process in pure neutron
matter

v4+4n—1v +n

* The mean free path of a low-energy non degenerate neutrino at
zero temperature is obtained from

2 3
% = % p/ (3753 [(1+ cos6)S(q,w) + CZ (3 — cos0)S(q,w)]

where S and S are the density (Fermi) and spin (Gamow Teller)
response, respectively



NUCLEAR MATTER RESPONSES

* Density response

1
S = N ; 1(0]Jo|n) (n] Jo|0)6™ (Po + ¢ — Py)
% Spin-density response
§P=>"80,, (@=1,2,3)
1
805 =~ 2 01 alm) (0] J5/0)6) (Py + q = Pu)

* Neutral weak current

Jo = Z]? = Zeiq-xi R - Z]L _ Zeiqxio_a
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EFFECTIVE TRANSITION OPERATORS

* The CBF states can be exploited to construct effective transition
operators, consistent with the effective interaction, suitable for
the calculation of the nuclear matter response

* The weak responses can be computed using the Fermi gas states
and the corresponding Fermi and Gamow-Teller effective
operators, defined through

(n]J#0) = (nralJisl0ra)

and
Ty = FJ'F = J 4> {8 + 3% gi} + ...
J>i
with
gij = fij — 1

* The correlation functions are the same entering the definition of
the effective interaction Vg



Rp(w, q)(MeV—1)

* Density (a) and spin-density (b) responses of isospin-symmetric

nuclear matter at equilibrium density (|q| = 0.1, ...0.50 fm~1)
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% Neutrino mean free path in units of the Fermi gas result

2.6

2.4

2.2

MAre

2

1.8

1.6

CTD full expréssion
CTD simplified expression —----

CTD without collective mode ——— 1

40




SUMMARY & OUTLOOK

% The CBF formalism provides a consistent theoretical framework
for the unified description of equilibrium and non equilibrium
properties of strongly interacting many-body systems

% The results of the exploratory studies of the fermion hard-sphere
system stronlgly support the validity of the assumptions
underlying the CBF effective interaction approach

% Calculations of a variety of properties of nuclear matter at
temperatures S 50 MeV are on their way. Early results of these
studies are being used in simulations of GW emission from
protoneutron stars.



TWO-POINT GREEN’S FUNCTION
Dyson’s equation

G(k, E) = Go(k, E) + Go(k, E)S(k, E)G(k, E)
Non interacting Green’s function

Golh, B) = 0(k — kr)

0(kr — k)
— +
E —eo(k) +in

E —eo(k) —in
The irreducible (proper) self-energy X (k, E') (mass operator) takes into
account the effect of interactions.

The spectrum is determined by the singularities of G(k, E)

Gk B) = 2—

1
In perturbation theory

eo(k) — X(k, E)

Sk, E) =W (k) + =@ (k, E) + ...

Yopin(k, E)
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THE ELEMENTARY EXCITATION SPECTRUM

> The self energy is responsible for shifting the pole of the Green’s
function.

> The new poles determine energy e(k) and the damping I'; of the
quasiparticles state

» For small T, the propagation of quasiparticle states is described by

G(k’ E) T E-— e(k) + le

The energy of quasiparticle

e(k) = eo(k) + ReX[k, e(k)]
Quasiparticle lifetime

7' =Ty = ZIm3Z[k, e(k)]
The residue of the Green’s function
- (%ReE[k, gl

E=e(k)

Zr=|1

)
]



BOLTZMANN-LANDAU EQUATION

Shear viscosity 7 and thermal conductivity £ measure momentum and
energy fluxes in response to a gradient of velocity and temperature.

Boltzmann equation for a Fermi liquid:

Oruc | Omic Dewc O Oex _ pr g
ot or ok 9k or €
> ny is the distribution function
> e is the energy of a quasiparticle carrying momentum k

> I[ny] is the collision integral, defined in terms of the scattering
probability W

Taking into account small deviations from local equilibrium, transport
coefficients determined from the collision integral I[ny].

)



ABRIKOSOV-KHALATNIKOV SOLUTION

The lifetime
1 8rt 1

T s (W)

The transport coefficients
_ 16 1 7k} 1
T 3T mrt (WY — M)

_ 16 1 K 1
T T M (WY1 = Ay

T, 1, k are expressed in terms of angular averages of W

_ (W[L - 3sin*(0/2) sin” ¢])
W A= W) W)

The angular average is defined as
_ [ [0, 9)
()= 21 cos6/2

(W1 +2cosb])



THE SCATTERING PROBABILITY

W is related to the scattering cross section

1672 (d
wi(o,0) = oo (52)

» The AK formalism is derived in the frame in which the Fermi sphere is
at rest (AK)
do
» —
dQ
> the relative kinetic energy is the same Ecp, V frame

expressed in the laboratory or in the center of mass reference frame

2
Eem = EAK = 5—;(1 — cos6)
®cm = ¢
The in medium scattering probability has been computed within the Born
approximation using vesr

W (0, ¢) = 7 | [k}, Kb|verr k1, ka] |



LONG-RANGE CORRELATIONS

* At low momentum transfer the space resolusion of the neutrino

becomes much larger than the average NN separation distance
(~ 1.5 fm), and the interaction involves many nucleons

* Write the nuclear final state as

a superposition of 1plh states
(RPA scheme)

o
In) = i_ilci lpihi)

<

RO
e
)



TAMM-DANCOFF (RING) APPROXIMATION

* Propagation of the particle-hole pair produced at the interaction
vertex gives rise to a collective excitation. Replace

Iph) = |n) = ZC Ipihs)

* The energy of the state |n) and the coeff1c1ents C; are obtained
diagonalizing the hamiltonian matrix

Hij = (Eo + ey, — en,)dij + (hipi| Vest | hjp;)
kQ
= — kk' kk'
€k om + < ‘Vveff | >a
k/
* The appearance of an eigenvalue, w;,, lying outside the
particle-hole continuum signals the excitation of a collective
mode
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* Mean free path of a non degenerate neutrino in neutron matter.
Left: density-dependence at ky = 1 MeV and T = 0 ; Right:
energy dependence at p = 0.16 fm > and 7' = 0,2 MeV

I
L T=0 4
6000 - o oh only ]
N - 1
N\ zero sound
[ o
4000 —o_ g Vo —0—o—°
[ N
2000 — T _Fe
IR R T [ -
0.0 0.1 0.2 0.3




* Density and temperature dependence of the mean free path of a
non degenerate neutrino at ko = 1 MeV and p = 0.16 fm >
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SUPERFLUID GAP IN PURE NEUTRON MATTER

1 c2 ok ED)A(K)
Ak)=—— [ dk'k
*) / [€2(k') + A2(k)]?

vk, k') = /d?“’l’zjo(k:T)Ueff(T)jo(k/T)

A(ky) [MeV]

Sizable reduction of the gap, due to
the inclusion of three-nucleon in-
teraction in the definition of vesg
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