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PREAMBLE
? This talk will focus on a very small—although arguably very

important—region of the QCD phase diagram
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OUTLINE

? Modeling Nuclear Dynamics
? Ab initio Approaches to the Nuclear Many-Body Problem
? The CBF Effective Interaction
? The Fermi Hard-Sphere System as a Testing Ground

. Energy per Particle and Quasi Particle Properties

. Momentum Distribution

. Transport Coefficients

? Nuclear Matter Properties
. Energy of Cold β-Stable Matter
. Extension to Finite Temperature
. Response to Interactions With Low-Energy Neutrinos

? Summary & Outlook
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MODELING NUCLEAR DYNAMICS

? ab initio (bottom-up) approach: nuclear systems are described as
a collection of point-like particles, whose dynamics are decribed
by the Hamiltonian

H =
∑

i

p2
i

2m
+
∑

j>i

vij +
∑

k>j>i

vijk

. vij provides a very accurate descritpion of the two-nucleon system,
in both bound and scettering states, and reduces to Yukawa’s
one-pion-exchange potential at large distances

. inclusion of vijk needed to explain the ground-state energies of the
three-nucleon systems

. vij is spin and isospin dependent, non spherically symmetric, and
strongly repulsive at short distance

. nuclear interactions can not be treated in perturbation theory in the
basis of eigenstates of the non interacting system
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? Quantum Monte Carlo and variational calculations performed
using phenomenological nuclear Hamiltonians explain the
energies of the ground-and low-lying excited states of nuclei
with mass A ≤ 12, as well as saturation of the equation of state of
cold isospin-symmetric nuclear matter
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FIG. 3 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to
experiment. See Table I for references.

TABLE I AV18+IL7 GFMC results for A  12 nuclear ground states (Brida et al., 2011; Lovato et al., 2013; McCutchan et al.,
2012; Pastore et al., 2013, 2014; Pieper and Carlson, 2015; Wiringa et al., 2013), compared to experimental values (Amroun
et al., 1994; NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994;
Tilley et al., 2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors;
errors of less than one in the last decimal place are not shown.

AZ(J⇡; T ) E (MeV) rp [rn] (fm) µ (µN ) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) �2.225 �2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+
; 1

2
) �8.47(1) �8.482 1.59 [1.73] 1.58 2.960(1) 2.979

3He( 1
2

+
; 1

2
) �7.72(1) �7.718 1.76 [1.60] 1.76 �2.100(1) �2.127

4He(0+; 0) �28.42(3) �28.30 1.43 1.462(6)
6He(0+; 1) �29.23(2) �29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) �31.93(3) �31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) �0.082(2)
7He( 3

2

�
; 3

2
) �28.74(3) �28.86 1.97 [3.32(1)]

7Li( 3
2

�
; 1

2
) �39.15(3) �39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 �3.9(2) �4.06(8)

7Be( 3
2

�
; 1

2
) �37.54(3) �37.60 2.51 [2.32] 2.51(2) �1.42(1) �1.398(15) �6.6(2)

8He(0+; 2) �31.42(3) �31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) �41.14(6) �41.28 2.10 [2.46] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) �56.5(1) �56.50 2.40(1)
8B(2+, 1) �37.51(6) �37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) �24.53(3) �24.81 2.94 [1.85]
9Li( 3

2

�
, 3

2
) �45.42(4) �45.34 1.96 [2.33] 2.11(5) 3.39(4) 3.439 �2.3(1) �2.74(10)

9Be( 3
2

�
, 1

2
) �57.9(2) �58.16 2.31 [2.46] 2.38(1) �1.29(1) �1.178 5.1(1) 5.29(4)

9C( 3
2

�
, 3

2
) �38.88(4) �39.04 2.44 [1.99] �1.35(4) �1.391 �4.1(4)

10Be(0+; 1) �64.4(2) �64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) �64.7(3) �64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) �60.2(2) �60.32 2.51 [2.25]
12C(0+; 0) �93.3(4) �92.16 2.32 2.33
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CORRELATED BASIS FUNCTIONS (CBF)
? Replace the basis states of the non-interacting system with a set

of correlated states

|n0〉 → |n〉 =
F |n0〉

〈n0|F †F |n0〉1/2
=

1√Nn
F |n0〉

F = S
∏

j>i

fij

? The structure of the two-nucleon correlation operator reflects the
complexity of nuclear dynamics

fij =
∑

S,T=0,1

[fTS(rij) + δS1ftT (rij)Sij ]PST

PST spin− isospin projector operator , Sij = σαi σ
β
j

(rαijrβij
r2
ij

−δαβ
)

? The shapes of fTS(rij) and ftT (rij) are determined form
minimization of the ground-state energy
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NN POTENTIAL AND CORRELATION FUNCTIONS
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CBF EFFECTIVE INTERACTION

? In principle, the complete set of correlated states can be employed
to carry out perturbative calculations, using the bare nuclear
Hamiltonian

? However, correlated states are non orthogonal. Owing to this
feature, perturbation theory in the correlated basis involves
serious additional difficulties

? Alternatively, the formalism of correlated basis functions can be
exploited to obtain a well behaved effective interaction, suitable
for perturbation theory in the basis of eigenstates of the
non-interacting system
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? Cluster expansion of the Hamiltonian expectation value in the
correlated ground state of isospin-symmetric nuclear matter at
density ρ = 2k3

F /3π
2

〈H〉 = 〈0|H|0〉 =
3

5

k2
F

2m
+
∑

n≥2

(∆E[fTS , ftT ])n

? The shapes of the fTS , ftT are determined from functional
minimisation of 〈H〉. All relevant cluster terms can be included
using the FHNC/SOC summation scheme

? The CBF effective interaction is defined adjusting the correlation
functions in such a way as to satisfy the relation

〈H〉 =
3

5

k2
F

2m
+
(

∆E[f̃TS , f̃tT ]
)

2
=

3

5

k2
F

2m
+ 〈0FG|Veff |0FG〉

? In the case of central state-independent potential and correlation
function

Veff =
∑

j>i

veff(rij) , veff(r) =
1

m

(
∇f̃(r)

)2

+ f̃(r)v(r)f̃(r)
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? CBF effective interaction obtained from the Argonne v′6 + UIX
nuclear Hamiltonian
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE HARD-SPHERE MODEL

The Fermi hard-sphere model: point-like spin one-half particles

v(r) =

⇢
1 r < a
0 r > a

? Valuable model to study properties
of nuclear matter.

? Purely repulsive potential to prevent the
possibility of Cooper pairs formation.

? A simple many-body system to investigate
the validity and robustness of the
assumptions of CBF effective interaction
approach.

2 / 23

10 / 23



INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

DETERMINATION OF ve↵

For the hard-sphere system (HS) f(r  a) = 0 , lim
r!1

f(r) = 1

ve↵(r) =
1

m
[rf(r)]2 , r > a

We adjust the range of f(r) in order to reproduce the ground state energy
(FHNC/DMC) at two-body cluster level.

ve↵

? defined from hHi in the
correlated ground state

? employed in calculations
of matrix elements
involving excited states.
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE GROUND-STATE ENERGY

E0 =
3k2

F

10m
(1 + ⇣)

I The accuracy of the variational results depends on the quality of the trial
wave function.

I Long-range statistical correlations effects in f(r) much larger for ⌫ = 2
than for ⌫ = 4.

I DMC overcomes the limitations of the variational approach by using a
projection technique on the trial wave function.
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

QUASIPARTICLE SPECTRUM

m? =


1

k

de(k)

dk

��1

de(k)

dk
=


k

m
+

@

@k
Re⌃ (k, E)

� 
1 � @

@E
Re⌃ (k, E)

��1

E=e(k)
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

MOMENTUM DISTRIBUTION ⌫ = 4

In comparison with non orthogonal CBF perturbation theory

S. Fantoni and V. R. Pandharipande, Nucl. Phys. A 427(1984)

Momentum distribution of HS

c ⌘ kF a = 0.55

corresponds to n(k) of nuclear matter

⇢NM = 0.16 fm�3

kF = 1.33 fm�1

Nucleons in nuclear matter ⇠ HS
of radius a = 0.55/1.33 ⇠ 0.4 fm.

Virtual scattering processes between strongly correlated particles are mainly
driven by the short-range repulsive core of the nucleon-nucleon interaction.

14 / 23
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

LIFETIME AND TRANSPORT COEFFICIENTS

The second order contributions lead to
a sharp increase of m?, which in turn
implies a decrease of the shear viscos-
ity coefficient ⌘ and the thermal con-
ductivity .

21 / 23
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BACK TO NUCLEAR MATTER
? Energy per nucleon in isospin-symmetric matter (solid blue line),

pure neutron matter (dashed blue line) and β-stable matter (solid
magenta line)

? Calculations carried out at first order in the CBF effective
interaction, derived from the Argonne v′6 + UIX Hamiltonian.

? The effect of three-nucleon forces is accounted for through a
density-depencence of the CBF effective interaction
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? Nucleon chemical potential (left) and effective mass in units of
the nucleon mass (right), in isospin-symmetric matter (solid
lines) and pure neutron matter (dashed lines). Calculations
performed at first order in the CBF effective interaction
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EXTENSION TO T 6= 0

? A realistic and consistent description of the properties of hot
nuclear matter will be needed to perform systematic studies of
gravitational-wave emission from protoneutron stars

? Free energy of PNM (left) and SNM (right) at 0 ≤ T ≤ 50 MeV
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NEUTRINO INTERACTIONS WITH NUCLEAR MATTER

? Consider, for example, a neutral current process in pure neutron
matter

ν + n→ ν′ + n

? The mean free path of a low-energy non degenerate neutrino at
zero temperature is obtained from

1

λ
=
G2
F

4
ρ

∫
d3q

(2π)3

[
(1 + cos θ)S(q, ω) + C2

A(3− cos θ)S(q, ω)
]

where S and S are the density (Fermi) and spin (Gamow Teller)
response, respectively
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NUCLEAR MATTER RESPONSES

? Density response

Sρ =
1

N

∑

n

|〈0|J0|n〉〈n|J0|0〉δ(4)(P0 + q − Pn)

? Spin-density response

Sρ =
∑

α

Sραα , (α = 1, 2, 3)

Sραβ =
1

N

∑

n

|〈0|Jα|n〉〈n|Jβ |0〉δ(4)(P0 + q − Pn)

? Neutral weak current

J0 =
∑

i

j0
i =

∑

i

eiq·xi , Jα =
∑

i

jµi =
∑

i

eiq·xiσα
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EFFECTIVE TRANSITION OPERATORS

? The CBF states can be exploited to construct effective transition
operators, consistent with the effective interaction, suitable for
the calculation of the nuclear matter response

? The weak responses can be computed using the Fermi gas states
and the corresponding Fermi and Gamow-Teller effective
operators, defined through

〈n|Jµ|0〉 = 〈nFG|Jµeff |0FG〉

and
Jµeff = FJµF = Jµ +

∑

j>i

{jµi + jµj , gij}+ . . .

with
gij = fij − 1

? The correlation functions are the same entering the definition of
the effective interaction Veff
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? Density (a) and spin-density (b) responses of isospin-symmetric
nuclear matter at equilibrium density (|q| = 0.1, . . . 0.50 fm−1)A. Lovato et al. / Nuclear Physics A 901 (2013) 22–50 45

Fig. 13. Fermi (a) and Gamow–Teller (b) response functions of SNM at ρ = 0.16 fm−3, evaluated at q = 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50 fm−1 using the v6′ + UIX potential and correlation functions.

distribution entering the VGS calculation at three-body cluster level, the result of which is de-
noted VGS3b.

The static structure functions corresponding to the Fermi and Gamow–Teller transitions are
displayed in panels (a) and (b) of Fig. 14, respectively. The CTD results have been obtained
with the effective interaction based on the Argonne v′

6 + UIX Hamiltonian and the correspond-
ing correlations (see Table 2) have been used in the calculation of the effective operators. The
Hamiltonian entering the variational estimates, VGS and VGS3b, has been consistently chosen
to be the Argonne v′

6 + UIX.
The curves corresponding to the Fermi transition are normalized in order for the sum rule of

the non-interacting FG to approach unity in the |q| → ∞ limit. On the other hand, the Gamow–
Teller results are normalized in such a way that both the transverse and longitudinal sum rules,
to be defined below, tend to the same limit.

A. Lovato et al. / Nuclear Physics A 901 (2013) 22–50 45

Fig. 13. Fermi (a) and Gamow–Teller (b) response functions of SNM at ρ = 0.16 fm−3, evaluated at q = 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50 fm−1 using the v6′ + UIX potential and correlation functions.

distribution entering the VGS calculation at three-body cluster level, the result of which is de-
noted VGS3b.

The static structure functions corresponding to the Fermi and Gamow–Teller transitions are
displayed in panels (a) and (b) of Fig. 14, respectively. The CTD results have been obtained
with the effective interaction based on the Argonne v′

6 + UIX Hamiltonian and the correspond-
ing correlations (see Table 2) have been used in the calculation of the effective operators. The
Hamiltonian entering the variational estimates, VGS and VGS3b, has been consistently chosen
to be the Argonne v′

6 + UIX.
The curves corresponding to the Fermi transition are normalized in order for the sum rule of

the non-interacting FG to approach unity in the |q| → ∞ limit. On the other hand, the Gamow–
Teller results are normalized in such a way that both the transverse and longitudinal sum rules,
to be defined below, tend to the same limit.

? Neutrino mean free path in units of the Fermi gas result
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SUMMARY & OUTLOOK

? The CBF formalism provides a consistent theoretical framework
for the unified description of equilibrium and non equilibrium
properties of strongly interacting many-body systems

? The results of the exploratory studies of the fermion hard-sphere
system stronlgly support the validity of the assumptions
underlying the CBF effective interaction approach

? Calculations of a variety of properties of nuclear matter at
temperatures <∼ 50 MeV are on their way. Early results of these
studies are being used in simulations of GW emission from
protoneutron stars.
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

TWO–POINT GREEN’S FUNCTION

Dyson’s equation
G(k, E) = G0(k, E) + G0(k, E)⌃(k, E)G(k, E)

Non interacting Green’s function

G0(k, E) =
✓(k � kF )

E � e0(k) + i⌘
+

✓(kF � k)

E � e0(k) � i⌘

The irreducible (proper) self-energy ⌃(k, E) (mass operator) takes into
account the effect of interactions.
The spectrum is determined by the singularities of G(k, E)

G(k, E) =
1

E � e0(k) � ⌃(k, E)

In perturbation theory

⌃(k, E) = ⌃(1)(k) + ⌃(2)(k, E) + . . .

k�

⌃HF (k)

q k�q�

⌃2p1h(k, E)

q k�q�

⌃2h1p(k, E)
11 / 23
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THE ELEMENTARY EXCITATION SPECTRUM

I The self energy is responsible for shifting the pole of the Green’s
function.

I The new poles determine energy e(k) and the damping �k of the
quasiparticles state

I For small �k, the propagation of quasiparticle states is described by

G(k, E) =
Zk

E � e(k) + i�k

The energy of quasiparticle

e(k) = e0(k) + Re⌃[k, e(k)]

Quasiparticle lifetime

⌧�1
k = �k = ZkIm⌃[k, e(k)]

The residue of the Green’s function

Zk =


1 � @

@E
Re⌃[k, E]

��1

E=e(k)

18 / 1
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

BOLTZMANN-LANDAU EQUATION

Shear viscosity ⌘ and thermal conductivity  measure momentum and
energy fluxes in response to a gradient of velocity and temperature.

Boltzmann equation for a Fermi liquid:

@nk

@t
+

@nk

@r
· @✏k
@k

� @nk

@k
· @✏k
@r

= I[nk]

I nk is the distribution function
I ✏k is the energy of a quasiparticle carrying momentum k

I I[nk] is the collision integral, defined in terms of the scattering
probability W

Taking into account small deviations from local equilibrium, transport
coefficients determined from the collision integral I[nk].

17 / 23
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

ABRIKOSOV–KHALATNIKOV SOLUTION

The lifetime

⌧ =
1

T 2

8⇡4

m?3

1

hW i
The transport coefficients

⌘ =
16

15

1

T 2

k5
F

m?4

1

hW i(1 � �⌘)
,  =

16

3

1

T

⇡2k3
F

m?4

1

hW i(3 � �)

⌧ , ⌘,  are expressed in terms of angular averages of W

hW i , �⌘ =
hW [1 � 3 sin4(✓/2) sin2 �]i

hW i , � =
hW [1 + 2 cos ✓]i

hW i

The angular average is defined as

hfi ⌘
Z

d⌦

2⇡

f(✓,�)

cos ✓/2

19 / 23
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INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

THE SCATTERING PROBABILITY

W is related to the scattering cross section

W (✓,�) =
16⇡3

m2

✓
d�

d⌦

◆

I The AK formalism is derived in the frame in which the Fermi sphere is
at rest (AK)

I d�

d⌦
expressed in the laboratory or in the center of mass reference frame

I the relative kinetic energy is the same Ecm 8 frame

Ecm = EAK
rel =

k2
F

2m
(1 � cos ✓)

⇥cm = �

The in medium scattering probability has been computed within the Born
approximation using ve↵

W (✓,�) = ⇡
��[k0

1,k
0
2|ve↵ |k1,k2]

��2

20 / 23
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LONG-RANGE CORRELATIONS

? At low momentum transfer the space resolusion of the neutrino
becomes much larger than the average NN separation distance
(∼ 1.5 fm), and the interaction involves many nucleons

← λ ∼ q−1 →

d

? Write the nuclear final state as
a superposition of 1p1h states
(RPA scheme)

|n〉 =

N∑

i=1

Ci |pihi)

+ + + . . .
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TAMM-DANCOFF (RING) APPROXIMATION

? Propagation of the particle-hole pair produced at the interaction
vertex gives rise to a collective excitation. Replace

|ph〉 → |n〉 =

N∑

i=1

Ci |pihi)

? The energy of the state |n〉 and the coefficients Ci are obtained
diagonalizing the hamiltonian matrix

Hij = (E0 + epi − ehi
)δij + (hipi|Veff |hjpj)

ek =
k2

2m
+
∑

k′

〈kk′|Veff |kk′〉a

? The appearance of an eigenvalue, ωn, lying outside the
particle-hole continuum signals the excitation of a collective
mode
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? Mean free path of a non degenerate neutrino in neutron matter.
Left: density-dependence at k0 = 1 MeV and T = 0 ; Right:
energy dependence at ρ = 0.16 fm−3 and T = 0, 2 MeV
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? Density and temperature dependence of the mean free path of a
non degenerate neutrino at k0 = 1 MeV and ρ = 0.16 fm−3

32 / 23



INTRODUCTION CBF EFFECTIVE INTERACTION EQUILIBRIUM HS TRANSPORT HS SUMMARY & PROSPECTS

SUPERFLUID GAP IN PURE NEUTRON MATTER

�(k) = � 1

⇡

Z
dk0k02 v(k, k0)�(k0)

[⇠2(k0) + �2(k0)]1/2
Omar Benhar et al.: Superfuidity in neutron-star matter 3

has been solved using the algorithm discussed in Ref. [19].
In Eq.(5)

v(k, k�) =

�
r2drj0(kr)ve�(r)j0(k

�r) , (6)

where j0(x) = sin(x)/x and vve�(r) is the NN potential
(see Fig.1), while

�(k) = e(k) � µ , (7)

e(k) and µ = e(kF ) being the energy of a particle carrying
momentum k and the chemical potential, respectively.

The calculation has been carried out using the CBF ef-
fective interaction of Ref. [8], with and without inclusion
of the UIX three-nucleon potential in the nuclear Hamil-
tonian. The resulting e�ective interactions are compared
in the inset of Fig. 1. The single particle spectra e(k) have
been consistently computed from the CBF e�ective inter-
actions within the Hartee-Fock approximation. For com-
parison, the calculation has been also performed using the
bare v�6 potential and the kinetic energy spectrum.

The superfluid gap at the Fermi surface, �(kF ) is dis-
played in Fig. 2 as a function of the Fermi momentum.
The dot-dash line shows the results obtained using the
bare v�6 potential, while the solid and dashed lines corre-
spond to calculations carried out using the CBF e�ective
interaction, with and without inclusion of three-nucleon
forces, respsctively.

It appears that, while the range of Fermi momentum
in which �(kF ) �= 0 is about the same for all potentials
under consideration, the inclusion of three-nucleon forces
leads to a sizable reduction of the gap. Their e�ect, while
being hardly noticeable in the r-dependence of the e�ec-
tive interaction (see inset of Fig. 1), turns out to be sizable
in the matrix element �k|ve� |k�� at |k| = |k�| = kF , vF ,
driving the solution of the gap equation. For example, at
kF = 0.9 fm�1, roughly corresponding to the maxima of
the curves of Fig. 2, the inclusion of the UIX potential
reduces vF by more than 25%.

4 Conclusions

We have carried out a calculation of the superfluid gap
in PNM, associated with the formation of Cooper pairs
of neutrons in states of total spin S = 0 and relative an-
gular momentum � = 0. The interaction in this channel,
which dominates the attractive component of the neutron-
neutron force, has been described using an e�ective inter-
action derived from the state-of-the-art models of the two-
and three-nucleon potentials referred to as Argonne v�6 and
Urbana IX, within the CBF formalism.

The main advantage of our approach lies in the fact
that, unlike the e�ective interactions based on the mean
field approximation, the CBF e�ective interaction reduces
to the bare interaction in the zero-density limit. As a
consequence, it can be used to carry out consistent cal-
culations of a number of di�erent properties of neutron
star matter, thus allowing for a comprehensive description

Fig. 2. Fermi momentum dependence of the supefluid gap at
the Fermi surface, �(kF ). The dot-dash line shows the results
obtained using the bare v0

6 potential, while the solid and dashed
lines correspond to calculations carried out using the CBF ef-
fective interaction, with and without inclusion of three-nucleon
forces, respsctively.

of equilibrium and non equilibrium properties of neutron
stars.

We find that a superfluid phase develops in the region
of low density, � � �0, where �0 � 2.7�1014 g/cm3 is the
equilibrium density of isospin symmetric nuclear matter.
As the maximum of the superfluid gap occurs at density
� � 0.15�0, our work is relevant to the description of the
neutron gas in the region of the inner crust, extending

from � � 4 � 1011 g/cm
3

to � � 2 � 1014 g/cm
3
.

In the case of 1S0 pairing, the critical temperature of
the superfluid transition can be estimated from the value
of the gap at T = 0 [20]. The resulting maximum values
are in the range Tc � 1 � 2 MeV, corresponding to �
1 � 2 � 1010 K.

Our results, while being interesting in their own right,
should be regarded as a first step towards a comprehensive
description of the superfluid and superconductive phases
of neutron stars. The interaction between neutrons cou-
pled to total spin S = 1 and angular momentum � = 1 is
also attractive. The formation of Cooper pairs of neutrons
with these quantum numbers is expected to occur at den-
sities � > �0 typical of the neutron star core. The appear-
ance of a superfluid phase in this region would strongly
a�ect the dissipative processes determining the stability
of rotating stars. In addition, the small fraction – typi-
cally less that � 10% – of protons are also expected to be-
come superconductive, thus a�ecting dissipative processes
driven by electromagnetic interactions with electrons and
muons. The extension of the formalism employed in our
work to study neutron superfluidity in the 3P2 channel and
proton superconductivity does not involve any conceptual
di�culties.
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v(k, k0) =

Z
dr r2j0(kr)ve↵(r)j0(k

0r)

�(kF ) in 1S0 channel

Sizable reduction of the gap, due to
the inclusion of three-nucleon in-
teraction in the definition of ve↵
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