Efrain J. Ferrer

The University of Texas at El Paso

Efrain J. Ferrer

The University of Texas at El Paso

✓ The Color Superconducting Phase at B=0 & B≠0

CSQCD-V, L'Aquila, Italy, May 23-27, 2016

Efrain J. Ferrer

The University of Texas at El Paso

✓ The Color Superconducting Phase at B=0 & B≠0
 ✓ The BCS-BEC Crossover at Strong Coupling

CSQCD-V, L'Aquila, Italy, May 23-27, 2016

Efrain J. Ferrer

The University of Texas at El Paso

The Color Superconducting Phase at B=0 & B≠0
 The BCS-BEC Crossover at Strong Coupling
 The Neutral Magnetic DCDW Phase

CSQCD-V, L'Aquila, Italy, May 23-27, 2016

Bibliography

• EJF, V. de la Incera, J. Keith, I. Portillo and P. Springsteen

Phys. Rev. C 82 (2010) 065802

• L. Paulucci, EJF, V. de la Incera, J.E. Horvath

Phys. Rev. D 83 (2011) 043009

• L. Paulucci, EJF, J.E. Horvath, V. de la Incera

J. Phys. G 40 (2013) 125202

• EJF, V. de la Incera, J. Keith, I. Portillo and P. Springsteen

Nucl. Phys. A 933 (2015) 229

• EJF, V. de la Incera, D. Manreza, A. Perez-Martinez and A. Sanchez

Phys. Rev. D 91 (2015) 085041

• S. Carignano, EJF, V. de la Incera and L. Paulucci

Phys. Rev. D 92 (2015) 105018

QCD Phase Diagram

Sophie Bushwick, News, July 22, 2010

QCD Phase Diagram

Sophie Bushwick, News, July 22, 2010

Neutron Stars

Diameter: ? $R \approx 10 \ km$ Mass: $1.25M_{\odot} \leq M \leq 2M_{\odot}$ **Temperature:** $10 \ keV \leq T \leq 10 MeV$ **Magnetic fields:** pulsar's surface: $B \sim 10^{12} - 10^{13} G$ magnetar's surface: $B \sim 10^{14} - 10^{15} G$

Cooper Pair Condensation

$$\mathbf{F}[\Psi] = \int d^3 x \left\{ \frac{\hbar^2}{2\hat{m}} \vec{\nabla} \Psi * \vec{\nabla} \Psi + \alpha (\mathbf{T} - \mathbf{T}_{\mathrm{C}}) \Psi * \Psi + \frac{\beta}{2} (\Psi * \Psi)^2 \right\}$$

V. L. Ginzburg

L. D. Landau

Electric Superconductivity

J. Bardeen, L. N. Cooper and J. R. Schrieffer

 Boson: Zero Spin and opposite momenta

Broken Symmetry : U(1)_{em}

Color Superconductivity

Barrois '77; Frautschi '78; Bailin and Love'84; Alford, Rajagopal and Wilczek '98; Rapp, Schafer, Shuryak and Velkovsky '98

✓ Color Charge

Stoken Symmetry : SU(3)_C, U(1)_{em}

CFL Phase

$$\Delta_1 = \Delta_2 = \Delta_3$$

$$m_D^2 = \frac{21 - 8\ln 2}{18}m_g^2, \qquad m_M^2 = \frac{21 - 8\ln 2}{54}m_g^2, \qquad m_g^2 = g^2\mu^2 N_f/6\pi^2.$$

In the CFL phase all quarks pair and all the nonabelian gauge bosons are massive, so the only infrared degrees of freedom are Goldstone bosons and Abelian photon.

In-Medium Magnetic Field in the CFL Phase

Rotated Charges

The pairs are all \tilde{Q} -neutral, but the quarks can be neutral or charged

All \tilde{Q} -charged quarks have integer charges

Bag vs NJL Model in the CFL Phase

Bag Model

$$\Omega_{CFL}^{MIT} = \sum_{i} \Omega_i - \frac{3}{\pi^2} \Delta_{CFL}^2 \mu^2 + B \qquad \Omega_i = \frac{\mu_i^4}{4\pi^2}$$

NJL Model

$$\Omega_{CFL}^{NJL} = -\frac{1}{4\pi^2} \int_0^\infty dp p^2 e^{-p^2/\Lambda^2} (16|\epsilon| + 16|\overline{\epsilon}|) + \\ -\frac{1}{4\pi^2} \int_0^\infty dp p^2 e^{-p^2/\Lambda^2} (2|\epsilon'| + 2|\overline{\epsilon'}|) + \frac{3\Delta_{CFL}^2}{G} + B$$

$$\varepsilon = \pm \sqrt{(p-\mu)^2 + \Delta_{CFL}^2}, \quad \overline{\varepsilon} = \pm \sqrt{(p+\mu)^2 + \Delta_{CFL}^2}$$
$$\varepsilon' = \pm \sqrt{(p-\mu)^2 + 4\Delta_{CFL}^2}, \quad \overline{\varepsilon'} = \pm \sqrt{(p+\mu)^2 + 4\Delta_{CFL}^2}$$

Bag & NJL EoS in the CFL Phase

NJL Model

Bag Model

$$\epsilon_{CFL} = \Omega_{CFL} - \mu \frac{\partial \Omega_{CFL}}{\partial \mu},$$

$$P_{CFL} = -\Omega_{CFL}$$

BEC-BSC CROSSOVER

Tango or twist? In a magnetic field, atoms in different spin states can form molecules (*left*). Vary the field, and they might also form loose-knit Cooper pairs. **Science**

- Strong coupling
- Small pair size
- Coherence length << mean interparticle distance

- Weak coupling
- Large pair size
- Coherence length >>mean interparticle distance

NJL Model with Multi-Fermion Interactions

NJL-Type Model

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_{int}^{dd}$$

$$\mathcal{L}_1 = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} + \gamma^0\mu)\psi + \frac{G_{\rm s}}{4}(\bar{\psi}\psi)^2 + \frac{G_{\rm D}}{4}(\bar{\psi}i\gamma_5C\bar{\psi}^T)(\psi^TCi\gamma_5\psi)$$

$$\mathcal{L}_{int}^{dd} = \lambda \left[(\bar{\psi} i \gamma_5 C \bar{\psi}^T) (\psi^T C i \gamma_5 \psi) \right]^2$$

Condensates

$$m = -\frac{G_{\rm s}}{2} \langle \bar{\psi}\psi \rangle, \quad \Delta = -\frac{G_{\rm D}}{2} \langle \psi^T C\gamma_5\psi \rangle$$

Thermodynamic Potential

$$\Omega_0 = -\sum_{e=\pm 1} \int_{\Lambda} \frac{d^3k}{(2\pi)^3} \epsilon_k^e + \chi' \frac{|\Delta|^2}{G_{\rm D}} + \frac{m^2}{G_{\rm S}}$$

$$\epsilon_k^e = \sqrt{(\epsilon_k - e\mu)^2 + \chi^2 |\Delta|^2}, \qquad \epsilon_k = \sqrt{k^2 + m^2}, \qquad e = \pm 1$$

$$\chi = (1 + 32\lambda |\Delta|^2 / G_{\rm D}^3), \qquad \chi' = (1 + 48\lambda |\Delta|^2 / G_{\rm D}^3)$$

Gap Equations at Fixed Particle Number Density

BCS-BEC Crossover

The graphs were taken at $G_S \Lambda^2=1.20$ and $P_F / \Lambda=0.10$ The value of the critical coupling at $\lambda=0$ is $G^{cr}{}_D \Lambda^2=0.81$.

Quasiparticles' Dispersion Relations

λ≠0

The graphs are taken at values of the critical coupling smaller and larger than the critical one $G^{cr}{}_{D}\Lambda^2=0.81$.

We note that at $\lambda=0$ for $G_D > G^{cr}_D$ the quasiparticle spectrum is bosonic, while for $G_D < G^{cr}_D$ is fermionic. At $\lambda\Lambda^8=10^6$ both spectra are fermionic.

EoS in the Crossover

The graphs were taken at $G_S \Lambda^2 = 1.20$ and $P_F / \Lambda = 0.10$ The value of the critical coupling at $\lambda = 0$ is $G^{cr}{}_D \Lambda^2 = 0.81$.

In the strong coupling regime only if there exists a strong diquarkdiquark repulsion the system pressure can increase.

Gluons in the CFL Phase

Gauged-NJL Model with vector interaction

$$\mathcal{L} = -\bar{\psi}(\gamma^{\mu}D_{\mu} + \mu\gamma^{0})\psi - G_{V}(\bar{\psi}\gamma_{\mu}\psi)^{2} + G_{S}\sum_{k=0}^{8} \left[\left(\bar{\psi}\lambda_{k}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\lambda_{k}\psi\right)^{2}\right]$$
$$-K\left[det_{f}\left(\bar{\psi}(1+\gamma_{5})\psi\right) + det_{f}\left(\bar{\psi}(1+\gamma_{5})\psi\right)\right] + \frac{G_{D}}{4}\sum_{\eta}(\bar{\psi}P_{\eta}\bar{\psi}^{T})(\psi^{T}P_{\eta}\psi) + \mathcal{L}_{G},$$

$$\mathcal{L}_G = -\frac{1}{4} G^A_{\mu\nu} G^{\mu\nu}_A + \mathcal{L}_{gauge} + \mathcal{L}_{ghost},$$

$$G^A_{\mu\nu} = \partial_\mu G^A_\nu - \partial_\nu G^A_\mu + g f^{ABC} G^B_\mu G^C_\nu,$$

$$\mathcal{L}_{ghost} = -\eta^{A\dagger} \partial^{\dot{\mu}} (\partial_{\mu} \eta^{A} + g f^{ABC} G^{\dot{B}}_{\mu} \eta^{C})$$

Condensates

$$\Delta_{\eta} = \langle \psi^T P_{\eta} \psi \rangle \quad \rho = \langle \bar{\psi} \gamma_0 \psi \rangle \implies \tilde{\mu} = \mu - 2G_V \rho$$

Gluon Contribution

System Effective Action

$$\Gamma(\mathbf{G}) = \beta V \Omega_0 + \sum_{n=2}^{\infty} \int dx_1 \dots dx_n \Pi^{A_1, A_2, \dots, A_n}_{\mu_1, \mu_2, \dots, \mu_n} (x_1, x_2, \dots, x_n) G^{\mu_1}_{A_1}(x_1) \dots G^{\mu_n}_{A_n}(x_n)$$

Gluon Effective Action Leading Contribution

$$\int dx^4 \left[-\frac{1}{4} (\partial_\mu G^A_\nu - \partial_\nu G^A_\mu)^2 - \frac{\xi^2}{2} (\partial_\mu G^A_\mu)^2 + \frac{1}{2} G^A_\mu \Pi^{\mu\nu}_{AB} G^B_\nu \right]$$

In Covariant Gauge: $F_{\xi} = \xi \partial^{\mu} G^{A}_{\mu} = 0$

In the Hard-Loop Approximation:

$$\Pi^{AB}_{\mu\nu}(p_0=0,\mathbf{p}\to 0) = [\hat{\tilde{m}}^2_D \delta_{\mu 0} \delta_{\nu 0} + \hat{\tilde{m}}^2_M \delta_{\mu i} \delta_{\nu i}] \delta^{AB}$$

with

$$\hat{\tilde{m}}_D = \tilde{m}_D \theta (\Delta - p) + \sqrt{3} \tilde{m}_g \theta (\tilde{\mu} - p) \theta (p - \Delta)$$
$$\hat{\tilde{m}}_M = \tilde{m}_M \theta (\Delta - p)$$

Thermodynamic Potential of the CFL-Gluonic Phase $\Omega = \Omega_q + \Omega_g - \Omega_{vac} \qquad \Omega_{vac} \equiv \Omega(\mu = 0, \Delta = 0)$ $\Omega_{CFL}(T=0) = -\frac{1}{4\pi^2} \int_0^{\Lambda} dp p^2 (16|\epsilon| + 16|\overline{\epsilon}|) -$ $-\frac{1}{4\pi^2}\int_0^{\Lambda} dp p^2 (2|\epsilon'|+2|\overline{\epsilon'}|) + \frac{3\Delta^2}{G_D} - G_V \rho^2,$ $\varepsilon = \pm \sqrt{(p - \tilde{\mu})^2 + \Delta^2}, \quad \overline{\varepsilon} = \pm \sqrt{(p + \tilde{\mu})^2 + \Delta^2},$ $\varepsilon' = \pm \sqrt{(p - \tilde{\mu})^2 + 4\Delta^2}, \quad \overline{\varepsilon}' = \pm \sqrt{(p + \tilde{\mu})^2 + 4\Delta^2}.$ $\Omega_G(T=0) = \frac{2}{\pi^2} \int_0^{\Lambda} dp p^2 \left(\sqrt{p^2 + \tilde{m}_D^2 \theta(\Delta - p) + 3\tilde{m}_g^2 \theta(\tilde{\mu} - p)\theta(p - \Delta)} + \right) dp p^2 \left(\sqrt{p^2 + \tilde{m}_D^2 \theta(\Delta - p) + 3\tilde{m}_g^2 \theta(\tilde{\mu} - p)\theta(p - \Delta)} + \right)$

$$+ 3\sqrt{p^2 + \tilde{m}_M^2 \theta(\Delta - p)} \Bigg)$$

EoS of the CFL-Gluonic Phase

Gap Equations

$$\frac{\partial\Omega}{\partial\Delta} = 0, \quad \rho = -\frac{\partial\Omega_q}{\partial\tilde{\mu}}$$

Equations of State

$$\epsilon = \Omega_q + \Omega_g - \Omega_{vac} + \tilde{\mu}\rho - (B - B_0)$$

$$P = -(\Omega_q + \Omega_g - \Omega_{vac}) + (B - B_0)$$

B_0 is introduced to ensure that $\epsilon = P = 0$ in vacuum.

Dynamical Bag Constant

M. Buballa and M. Oertel, Phys. Lett. B 457 (1999) 261

$$B = \sum_{i=u,d,s} \left[\frac{3}{\pi^2} \int_0^{\Lambda} p^2 dp \left(\sqrt{m_i^2 + p^2} - \sqrt{p^2} \right) - 2G_S \langle \overline{\psi}_i \psi_i \rangle \right] + 4K \langle \overline{\psi}_u \psi_u \rangle \langle \overline{\psi}_d \psi_d \rangle \langle \overline{\psi}_s \psi_s \rangle$$

Quark Condensates

$$\langle \overline{\psi}_i \psi_i \rangle = -\frac{3}{\pi^2} \int_{p_{Fi}}^{\Lambda} p^2 dp \frac{m_i}{\sqrt{m_i^2 + p^2}},$$

Dynamical Masses

$$m_{i} = 4G_{S}\frac{3}{\pi^{2}}\int_{p_{Fi}}^{\Lambda} p^{2}dp\frac{m_{i}}{\sqrt{m_{i}^{2} + p^{2}}} + 2K\frac{9}{\pi^{4}}\int_{p_{Fi}}^{\Lambda} p^{2}dp\frac{m_{j}}{\sqrt{m_{j}^{2} + p^{2}}}\int_{p_{Fi}}^{\Lambda} p^{2}dp\frac{m_{k}}{\sqrt{m_{k}^{2} + p^{2}}}$$

Vacuum Bag Constant

$$B_0 = B|_{\rho_u = \rho_d = \rho_s = 0}$$

$$B_{0} = \frac{9}{\pi^{2}} \left[\int_{0}^{\Lambda} p^{2} dp \left(\sqrt{m^{2} + p^{2}} - \sqrt{p^{2}} + \frac{2G_{S}m}{\sqrt{m^{2} + p^{2}}} \right) \right] - 4K \left(\frac{3}{\pi^{2}} \right)^{3} \left[\int_{0}^{\Lambda} dp p^{2} \frac{m}{\sqrt{m^{2} + p^{2}}} \right]^{3}$$
$$1 = 4G_{S} \frac{3}{\pi^{2}} \int_{0}^{\Lambda} p^{2} dp \frac{1}{\sqrt{m^{2} + p^{2}}} + 2K \frac{9}{\pi^{4}} \left[\int_{0}^{\Lambda} p^{2} dp \frac{m}{\sqrt{m^{2} + p^{2}}} \right]^{2}$$

Mass-Radius Relationship

Without Gluon Contribution

With Gluon Contribution

The Gluons decrease the maximum stellar mass for each sequence up to 20%. Sequence including gluons cannot reach two solar masses if G_v/G_s <0.2.

QCD Phase Diagram

Sophie Bushwick, News, July 22, 2010

Pressure Anisotropy in the MCFL Phase

EJF, V. de la Incera, J. Keith, I. Portillo and P. Springsteen, PRC 82 (2010) 065802

$$\frac{1}{\beta V} \langle \tilde{\tau}^{\mu\nu} \rangle = \Omega_H \eta^{\mu\nu} + (\mu N + TS) u^\mu u^\nu + HM \eta_\perp^{\mu\nu}$$

$$\Omega_H = \Omega_{MCFL} + B + \frac{\widetilde{H}^2}{2}$$

$$\eta_{\perp}^{\mu
u} = \widehat{F}^{\mu
ho}\widehat{F}^{
u}_{
ho}$$

$$\varepsilon_{MCFL} = \Omega_H - \mu \frac{\partial \Omega_H}{\partial \mu},$$

 $p_{MCFL}^{\parallel} = -\Omega_H, \quad p_{MCFL}^{\perp} = -\Omega_H + \widetilde{H} \frac{\partial \Omega_H}{\partial \widetilde{H}}$

Pressure Anisotropy in the MCFL Phase

L. Paulucci, EJF, de la Incera, J.E. Horvath, PRD (2011) 04300

Pressure Splitting vs B

L. Paulucci, EJF, de la Incera, J.E. Horvath, PRD (2011) 04300

At µ=500MeV, for H≈3×10¹⁸ G the splitting is 10% of the isotropic value at H=0

Mass-Radius Relationship for MCFL Stars

L. Paulucci, EJF, de la Incera, J.E. Horvath, PRD (2011) 04300

At μ=500MeV, for H≈3×10¹⁸ G

QCD Phase Diagram

Sophie Bushwick, News, July 22, 2010

The Neutral Inhomogeneous Condensate at B≠0

$$\mathcal{L}^{(2f)} = \bar{\psi} \left(i\gamma^{\mu} D_{\mu} + \mu\gamma^{0} - m_{q} \right) \psi + \bar{\psi}_{e} \left(i\gamma^{\mu} D_{\mu}^{(e)} - m_{e} \right) \psi_{e} + \mathcal{L}_{int}$$

$$D_{\mu} = \partial_{\mu} + iQA_{\mu}^{ext} \qquad Q = \text{diag}(e_{u}, e_{d}) = \text{diag}(\frac{2}{3}e, -\frac{1}{3}e)$$

$$\mathcal{L}_{int} = \mathcal{L}_{1} + \mathcal{L}_{2} + \mathcal{L}_{V}$$

$$\mathcal{L}_{1} = G_{1} \left[(\bar{\psi}\psi)^{2} + (\bar{\psi}i\gamma^{5}\psi)^{2} + (\bar{\psi}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma^{5}\tau^{a}\psi)^{2} \right],$$

$$\mathcal{L}_{2} = G_{2} \left[(\bar{\psi}\psi)^{2} - (\bar{\psi}i\gamma^{5}\psi)^{2} - (\bar{\psi}\tau^{a}\psi)^{2} + (\bar{\psi}i\gamma^{5}\tau^{a}\psi)^{2} \right],$$

$$\mathcal{L}_{V} = -G_{V} \left[(\bar{\psi}\gamma_{\mu}\psi)^{2} + (\bar{\psi}\gamma^{5}\gamma_{\mu}\psi)^{2} + (\bar{\psi}\gamma_{\mu}\tau^{a}\psi)^{2} + (\bar{\psi}\gamma^{5}\gamma_{\mu}\tau^{a}\psi)^{2} \right]$$

Condensates

$$\begin{aligned} -4G_S \langle \bar{\psi}_u \psi_u \rangle &= \Delta_u \cos(q_u z) \,, \quad -4G_S \langle \bar{\psi}_u i \gamma_5 \psi_u \rangle = \Delta_u \sin(q_u z) \,, \\ -4G_S \langle \bar{\psi}_d \psi_d \rangle &= \Delta_d \cos(q_d z) \,, \quad -4G_S \langle \bar{\psi}_d i \gamma_5 \psi_d \rangle = \Delta_d \sin(q_d z) \,. \end{aligned}$$

$$\langle \bar{\psi}_u \gamma_0 \psi_u \rangle = \rho_u, \quad \langle \bar{\psi}_d \gamma_0 \psi_d \rangle = \rho_d$$

Thermodynamic Potential

$$\begin{split} \Omega^{(2f)} &= \Omega_e + N_c \sum_{f=u,d} \Omega_f + \sum_{f=u,d} \left[\frac{\Delta_f^2}{8G_S} - \frac{(\tilde{\mu}_f - \mu_f)^2}{8G_V} \right] \\ \bar{\mu}_u &= \mu_u - 4G_V \rho_u , \qquad \tilde{\mu}_d = \mu_d - 4G_V \rho_d \\ \bar{\mu}_u &= \mu - \frac{2}{3}\mu_e , \qquad \mu_d = \mu + \frac{1}{3}\mu_e \\ \Omega_f &= \Omega_f^{vac} + \Omega_f^{med} , \\ \Omega_f^{vac} &= \frac{1}{4\sqrt{\pi}} \frac{|e_f H|}{(2\pi)^2} \int_{-\infty}^{\infty} dp_3 \int_{1/\Lambda^2}^{\infty} \frac{ds}{s^{3/2}} \left(\sum_{\epsilon} e^{-sE_{f,0}^2} + \sum_{n>0,\zeta,\epsilon} e^{-sE_{f,n}^2} \right) \\ \Omega_f^{med} &= -\frac{|e_f H|}{2\pi^2} \tilde{\mu}_f b_f - \frac{|e_f H|}{8\pi^2} \int_{-\infty}^{\infty} dp_3 \sum_{\epsilon} (|E_{f,0} - \tilde{\mu}_f| - |E_{f,0}|)|_{reg} \\ &- \frac{|e_f H|}{4\pi^2} \int_{-\infty}^{\infty} dp_3 \sum_{n>0,\zeta} (\tilde{\mu}_f - E_{f,n}) \Theta(\tilde{\mu}_f - E_{f,n})|_{\epsilon=1}, \end{split}$$

$$E_{f,n} = \epsilon \sqrt{\left(\zeta \sqrt{\Delta_f^2 + p_3^2} + b_f\right)^2 + 2|e_f H|n, \quad \epsilon = \pm, \ \zeta = \pm, \ n > 0$$

Gap Equations and Neutrality Condition

$$\begin{split} \frac{\partial \Omega^{(2f)}}{\partial \Delta_f} &= 0, \qquad \frac{\partial \Omega^{(2f)}}{\partial b_f} = 0, \qquad \frac{\partial \Omega^{(2f)}}{\partial \tilde{\mu}_f} = 0, \quad f \in \{u, d\}, \\ \\ \frac{\partial \Omega^{(2f)}}{\partial \mu_e} &= 0 \end{split}$$

Pressure Splitting and Maxwell Construction

Parallel (lower curves), perpendicular (upper curves). Central magnetic field of 2.5×10¹⁸ G (solid lines) and 6.8×10¹⁸ G (dashed lines).

$$\begin{split} P^{\parallel} &= -\Omega - \frac{H^2}{2} \,, \\ P^{\perp} &= -\Omega - H\mathcal{M} + \frac{H^2}{2} \,, \\ \varepsilon &= \Omega + \mu\rho + \frac{H^2}{2} \,, \end{split}$$

$$\Omega_{\rm nuclear}(\mu_{tr}) = \Omega_{\rm quark}(\mu_{tr})$$

Mass-Radius Relationship

Conclusions

In the strong coupling region the EoS of quark matter becomes softer due to the BCS-BEC crossover.

Gluons in the CFL phase of color-superconductivity decrease the stellar maximum mass in 20%. Only for a sufficiently high coupling G_V the value of 2 solar masses can be reached.

In the magnetic DCDW phase the 2 solar mass value can be only reached is the coupling G_V is sufficiently high.