Crystalline condensates in dense quark matter

Stefano Carignano

CSQCD V, May 2016

The QCD phase diagram

The QCD phase diagram

The QCD phase diagram

Compact stars: even more complicated!

Compact stars: even more complicated!

• Charge neutrality

Compact stars: even more complicated!

• Charge neutrality

• Magnetic fields

3 / 21

. . . .

Vacuum: quark-antiquark pairing \rightarrow homogeneous chiral symmetry breaking

Vacuum: quark-antiquark pairing \rightarrow homogeneous chiral symmetry breaking

becomes disfavored at high chemical potentials

High density: diquark pairing \rightarrow color-superconductivity

Intermediate densities: quark-hole pairing (opposite momenta) \rightarrow exciton

Intermediate densities: quark-hole pairing (equal momenta) \rightarrow inhomogeneous chiral symmetry breaking

Why inhomogeneous phases ?

- Popular already for quite some time...
 - Overhauser pairing in nuclear matter
 - Pion condensation
 - (Color-) Superconductivity
- Recently rediscovered and revised
 - Studies of lower-dimensional models (GN₂, NJL₂, ...)
 - Quarkyonic chiral spirals
 - ° ...
- May be relevant for cold dense matter !

Formalism

• Nambu-Jona-Lasinio model

$$\mathcal{L}_{\textit{NJL}} = ar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \textit{m}
ight) \psi + \textit{G} \left(\left(ar{\psi} \psi
ight)^2 + \left(ar{\psi} i \gamma^5 au^a \psi
ight)^2
ight)$$

- Chirally invariant four-fermion interaction
- Mean-field approximation \rightarrow Thermodynamic potential

Formalism

Nambu–Jona-Lasinio model

$$\mathcal{L}_{\textit{NJL}} = ar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - \textit{m}
ight) \psi + \textit{G} \left(\left(ar{\psi} \psi
ight)^2 + \left(ar{\psi} i \gamma^5 au^a \psi
ight)^2
ight)$$

- Chirally invariant four-fermion interaction
- Mean-field approximation \rightarrow Thermodynamic potential
- Inhomogeneous phases: retain spatial dependence of the condensates

$$\langle \bar{\psi}\psi
angle = S(\mathbf{x}), \qquad \langle \bar{\psi}i\gamma^5\tau_3\psi
angle = P(\mathbf{x})$$

• Minimize thermodynamic potential $\Omega(T, \mu; S, P)$

• Tackling an arbitrary spatial modulation is extremely complicated!

- Tackling an arbitrary spatial modulation is extremely complicated!
- In practice: choose a specific ansatz for the spatial dependence
- Typical examples:
 - Chiral density wave: $S(\mathbf{x}) \sim \Delta \cos(\mathbf{q} \cdot \mathbf{x})$, $P(\mathbf{x}) \sim \Delta \sin(\mathbf{q} \cdot \mathbf{x})$
 - Real cosine: $S(\mathbf{x}) \sim \Delta \cos(\mathbf{q} \cdot \mathbf{x}), \qquad P(\mathbf{x}) = 0$
 - Real kink crystal: $S(\mathbf{x}) \sim \Delta \nu \operatorname{sn}(\Delta z, \nu)$, $P(\mathbf{x}) = 0$
 - 2D solutions: $S(\mathbf{x}) \sim \Delta \cos(qx) \cos(qy)$, $P(\mathbf{x}) = 0$

- Real kink crystal is (usually) the most favored solution
- Qualitatively similar results for order parameters / phase diagrams for all modulations

CDW order parameters at T = 0

• Chiral density wave: $S(\mathbf{x}) \sim \Delta \cos(\mathbf{q} \cdot \mathbf{x})$, $P(\mathbf{x}) \sim \Delta \sin(\mathbf{q} \cdot \mathbf{x})$

$$M(\mathbf{x}) = -2G(S(\mathbf{x}) + iP(\mathbf{x})) \equiv \Delta e^{i\mathbf{q}\cdot\mathbf{x}}$$

Phase diagram

Phase diagram

Model dependence?

Model dependence?

Quark-meson model ("renormalized" extended MFA)

Model dependence?

Dyson-Schwinger methods

Extended NJL for realistic compact star description

- Magnetic fields
- Density effects ("vector interactions")
- Interplay with color-superconductivity
- Charge neutrality

Magnetic fields

- Effective dimensional reduction at the lowest Landau level (LLL)
- "Famous" consequence: Magnetic catalysis

Magnetic fields

- Effective dimensional reduction at the lowest Landau level (LLL)
- "Famous" consequence: Magnetic catalysis
- Dimensional reduction to 1+1D \rightarrow Inhomogeneous χSB
- Known examples:
 - \circ 1+1-dimensional QCD
 - \circ NJL₂ model
 - Quarkyonic matter (\rightarrow QCD₂)

Order parameters

Order parameters

- Vector interactions expected to play a role at finite densities
- Extend NJL Lagrangian by adding

$$\mathcal{L}_{V} = -G_{V} \sum_{a} \left(\bar{\psi} \gamma^{\mu} \tau_{a} \psi \right)^{2}$$

· Mean-field - amounts to a shift in the chemical potentials

$$\mu_f \rightarrow \tilde{\mu}_f = \mu_f - 4G_v \rho_f$$

• G_V free parameter

Vector interactions

Vector interactions

Phase diagram - vector interactions

Phase diagram - vector interactions

Phase diagram - vector interactions

Interplay with (homogeneous) color-superconductivity

Equation of state

- Inhomogeneous window appears at finite density
- What are its effects on the EoS ?

Equation of state

- Inhomogeneous window appears at finite density
- What are its effects on the EoS ?

Equation of state

- Inhomogeneous window appears at finite density
- What are its effects on the EoS ?

M(R) sequences for inhomogeneous quark matter

• Inhomogeneous phases likely to form in dense quark matter

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!
- Experimental signatures ?

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!
- Experimental signatures ?
 - M(R) sequences

- Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!
- Experimental signatures ?
 - -M(R) sequences
 - \circ Neutrino emission
 - ° ...

- · Inhomogeneous phases likely to form in dense quark matter
- Need to rethink the QCD phase diagram!
- Experimental signatures ?
 - M(R) sequences
 - \circ Neutrino emission
 - o ...

• Reviews:

Prog. Part. Nucl. Phys 81 (2015) , arXiv:1406.1367 EPJA Topical Issue "Exotic matter in NS" (2016), arXiv:1508.04361

phase diagram + csc

M(R) sequences - vector interactions

