Study of the electron lifetime limit using the Borexino data

A. Vishneva (on behalf of the Borexino collaboration) DLNP JINR, Dubna, Russia

LNGS, October 29, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Outline

- On the electric charge non-conservation
- Previous experiments
- The Borexino experiment

2 Analysis

- Statistical analysis
- Systematic errors

On the electric charge non-conservation

Why the electron decay?

There is no experimental evidence for the electric charge non-conservation (CNC)

However, there are some theories (beyond the Standard Model).

Continuous CNC \Rightarrow astrophysical effects:

- varying α theories;
- theories with non-constant speed of light;

Discrete CNC \Rightarrow atomic and nuclear effects:

- electron decay into neutral particles due to e.g. U(1) symmetry breaking;
- electron disappearance in extra-dimensional theories;

etc.

$e \rightarrow SM$ particles

In the Standard model these processes would be followed by a huge amount of bremsstrahlung photons (according to L. B. Okun, Sov. Phys. Usp. **32**, 543 (1989))

Experiments for the electron decay search

year	experiment	material	decay mode	limit, years	CL
1959	Feinberg, Goldhaber	NaI	$e \rightarrow \gamma \nu$	10 ¹⁹	68%
1959	Feinberg, Goldhaber	NaI	$e \rightarrow \nu \nu \nu$	1017	68%
1965	Moe, Reines	NaI	$e \rightarrow \gamma \nu$	4×10^{22}	68%
1965	Moe, Reines	NaI	$e \rightarrow \nu \nu \nu$	2×10^{21}	68%
1975	Steinberg et al.	Ge	$e \rightarrow \nu \nu \nu$	5.3×10^{21}	68%
1979	Kovalchuk et al. (Baksan)	NaI	$e \rightarrow \gamma \nu$	3.5×10^{23}	68%
1983	Belotti et al.	Ge	$e \rightarrow \gamma \nu$	3×10^{23}	68%
1983	Belotti et al.	Ge	$e \rightarrow \nu \nu \nu$	2×10^{22}	68%
1986	Avignone III et al.	Ge	$e \rightarrow \gamma \nu$	1.5×10^{25}	68%
1993	Balysh et al. (Heidelberg-Moscow)	Ge	$e \rightarrow \gamma \nu$	1.63×10^{25}	68%
1995	Aharonov et al. (TWIN)	Ge	$e \rightarrow \gamma \nu$	2.1×10^{25}	90%
1995	Aharonov et al. (COSME)	Ge	$e \rightarrow \nu \nu \nu$	2.6×10^{23}	90%
1996	Belli et al. (DAMA/LXe)	Xe	$e \rightarrow \gamma \nu$	2×10^{25}	68%
1996	Belli et al. (DAMA/LXe)	Xe	$e \rightarrow \nu \nu \nu$	1.5×10^{23}	68%
1999	Belli et al. (DAMA)	NaI	$e \rightarrow \nu \nu \nu$	$(1.5 - 2.4) \times 10^{23}$	90%
1999	Belli et al. (DAMA)	NaI (L-shell)	$e \rightarrow \nu \nu \nu$	2.4×10^{24}	90%
2000	Belli et al. (DAMA/LXe)	Xe	$e \rightarrow \gamma \nu$	2×10^{26}	90%
2002	Back et al. (Borexino/CTF-II)	PXE	$e \rightarrow \gamma \nu$	4.6×10^{26}	90%
2007	Klapdor-Kleingrothaus et al. (Heidelberg-Moscow)	Ge	$e \rightarrow \gamma \nu$	1.93×10^{26}	90%
2012	Bernabei et al. (DAMA/LIBRA)	NaI	e capture	1.2×10^{24}	90%
2003	Majorana	Ge		proposed	
2005	CUORE	TeO ₂		proposed	
2012	LENA	?		proposed	

Previous experiments

Nal experiments

M. K. Moe and F. Reines, Phys. Rev. 140, 992 (1965)

• $e \rightarrow \nu \nu \nu$:

dissapearance of an electron from iodide atom K-shell \Rightarrow photon emission while filling the vacancy (E_{max} = 33.2 keV)

• $e \rightarrow \gamma \nu$: monoenergetic photon emission (E = 256 keV)

Feinberg, Goldhaber (1959) - $10^{17}/10^{19}$ Moe, Reines (1965) - $2\times10^{21}/4\times10^{22}$ Kovalchuk et al. (1979) - 3.5×10^{23} DAMA (1999) - 2.4×10^{24}

Previous experiments

Nal experiments: coincidence techniques

- M. K. Moe and F. Reines, Phys. Rev. 140, 992 (1965)
 - filling of K-shell vacancy;
 - monoenergetic 256 keV photon.

Moe, Reines (1965) - 7×10^{21}

R. Bernabei et al., Eur. Phys. J. C 72, 1920 (2012)

$$(A, Z) + e^- \rightarrow (A, Z)^* + \nu_e$$

- filling of K-shell vacancy;
- electron capture ⇒ nucleus deexcitation (417.9 keV).

DAMA/LIBRA (2012) - 1.2×10^{24}

Previous experiments

Ge detectors

R. I. Steinberg et al., Phys. Rev. D12, 2582 (1975) Electron disappearance from Ge atom K-shell $\Rightarrow E = 11.1 \text{ keV}$

- energy resolution is better in comparison with Nal detectors;
- lower background level in the region of interest.

 $\begin{array}{l} \mbox{Steinberg et al. (1975) - } 5.3 \times 10^{21} \\ \mbox{Belotti et al. (1983) - } 2 \times 10^{22}/3 \times 10^{23} \\ \mbox{Avignone III et al. (1986) - } 1.5 \times 10^{25} \\ \mbox{TWIN, COSME (1995) - } 2.6 \times 10^{23}/2.1 \times 10^{25} \\ \mbox{Heidelberg-Moscow (1993, 2007) - } \\ \mbox{1.63} \times 10^{25}, 1.93 \times 10^{26} \end{array}$

Liquid scinlillation detectors

DAMA/LXe

- 6.5 kg of liquid xenon (~2 litres)
- energy threshold $\sim 17~{
 m keV}$
- energy resolution is comparable to Nal
- background level $0.22 \times 10^{-2} \text{ cpd/ton/keV}$

Borexino counting test facility (CTF)

 4 tons of organic liquid scintillator (PXE, C₁₆H₁₈ in CTF-II)

 4.6×10^{26}

イロト イ押ト イヨト イヨト

- energy threshold \sim 50 keV (sensitive only to $e \rightarrow \gamma \nu$)
- background level $0.15 \times 10^{-2} \text{ cpd/ton/keV}$

 $1.5 \times 10^{23}/2 \times 10^{26}$

The Borexino experiment

The Borexino detector

Properties

- scintillator: pesudocumene (1,2,4-trimethylbenzene) + PPO (2,5-diphenyloxazole, 1.5 g/l)
- Mass: 278 tons; 75.5 tons fiducial volume
- 2212 PMTs
- Energy threshold: \sim 50 keV
- specific background level in the region of interest (around the 256 keV photon peak): 0.15 cpd/ton/keV

number of events $S = \sqrt{\Phi}$, where Φ is integral background:

$$\Phi = 3.3\sigma \cdot \mathsf{B} \cdot \mathsf{M} \cdot \mathsf{T}$$

$$\implies \qquad The lifetime limit:
$$\tau \ge \epsilon N_e \frac{T}{S}$$$$

	ϵ	N_e	T, days	$B, \mathrm{keV^{-1} \cdot days^{-1} \cdot tons^{-1}}$	σ , keV	M, tons
CTF-II	0.67	1.36×10^{30}	32.1	1.5	30	4.2
Borexino	0.264	9.19×10^{31}	408	0.15	25	278

\Rightarrow the result can be improved at two orders of magnitude.

The Borexino experiment

Data set

Borexino Phase II data is being obtained after an extended purification campaign.

lsotope	Typical	Required	Before purification	After purification
²³⁸ U	2 ·10 ⁻⁵ (dust)	≤ 10 ⁻¹⁶ g/g	$(5.3 \pm 0.5) \cdot 10^{-18} \text{ g/g}$	< 0.8 ·10 ⁻¹⁹ g/g
²³² Th	2 ·10 ⁻⁵ (dust)	≤ 10 ⁻¹⁶ g/g	(3.8 ± 0.8) ·10 ⁻¹⁸ g/g	< 1.0 ·10 ⁻¹⁸ g/g
¹⁴ C/ ¹² C	10 ⁻¹² (cosmogenic)	≤ I0 ⁻¹⁸	(2.69 ± 0.06) ·10 ⁻¹⁸ g/g	unchanged
²²² Rn	100 atoms/ cm ³ (air)	≤ I0cpd/I00t	~lcpd/100t	unchanged
⁴⁰K	2 ·10-6 (dust)	≤ 10 ⁻¹⁸ g/g	≤ 0.4 ·10 ⁻¹⁸ g/g	unchanged
⁸⁵ Kr	I Bq/m ³ (air)	≤ cpd/100 t	$(30 \pm 5) \text{ cpd}/100 \text{ t}$	≤ 5 cpd/100 t
³⁹ Ar	l7 mBq/ m³(air)	≤ I cpd/100 t	<< ⁸⁵ Kr	<< ⁸⁵ Kr
²¹⁰ Po		not specified	(~80) ~20 cpd/100 t	unchanged
²¹⁰ Bi		not specified	(~20) ~70 cpd/100 t	(20 \pm 5) cpd/100 t

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

э

The Borexino experiment

Phase II data is successfully used in the pp-neutrino analysis:

Nature, 512, 383 – 386 (2014)

(日)、(型)、(E)、(E)、(E)、(O)()

The Borexino experiment

- From all the previous electron lifetime studies the best result was obtained by the prototype of Borexino, CTF-II
- In comparison with CTF-II, Borexino has lower background level, larger mass and exposure time
- The data set used in the pp-neutrino analysis is suitable for this study because of the same region of interest

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Overview

- On the electric charge non-conservation
- Previous experiments
- The Borexino experiment

2 Analysis

- Statistical analysis
- Systematic errors

▲ロ → ▲周 → ▲目 → ▲目 → ● ● ● ● ●

Basic steps

- MonteCarlo sumulation of the signal (256 keV photon) in the detector;
- Spectral fit (150 600 keV)
- Obtaining the probability profile \Rightarrow event number upper limit
- Obtaining the lifetime lower limit
- Study of systematic errors

Statistical analysis

Signal from the 256 keV monoenergetic photon in Borexino

The signal is simulated in GEANT4

Spectral fit

Fit result for the electron decay rate = 1.23 cpd/100 tons

Strong correlation with ν_{pp} rate!

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ めんぐ

Statistical analysis

The u_{pp} flux is a free parameter

- Event rate upper limit n_{max} ~ 12 cpd/100 tons
- It corresponds to Φ_{pp} = 0 (?!)

Results from radiochemical experiments (SAGE, GALLEX/GNO):

$$\Phi_{
hop} = \left(3.40^{+0.46}_{-0.47}
ight) imes 10^{10} \ cm^{-2}s^{-1}$$

イロト 不得 トイヨト イヨト ヨー ろくで

J. N. Abdurashitov *et al.* [SAGE Collaboration], Phys. Rev. C **80**, 015807 (2009)

χ^2 profile for the constrained Φ_{pp}

 χ^2 profile (pp event rate = 133.9 ± 13.3)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ のへぐ

(日)、(型)、(E)、(E)、(E)、(O)()

- choice of energy estimator (number of PMTs hit in the time period of 230 ns and 400 ns) $\Rightarrow~8\%$
- 1% light yield uncertainty $\Rightarrow~1\%$
- 2% fiducial mass uncertainty \Rightarrow < 0.01%

Conclusion

- Experimental investigating of processes with the electric charge non-conservation e.g. the electron decay is an evident way to search for physics beyond the Standard Model
- Search for the electron decay requires good detector response at low energies, low background level and large statistics
- Borexino detector is an excellent tool to improve the previous result obtained by its prototype
- The new limit on the electron lifetime is obtained

$$au_{e
ightarrow \gamma
u} \geqslant {
m 6.6} imes 10^{28}$$
 years (CL = 90%)