

Membrane operations for the treatment of gases

Giuseppe BARBIERI

Università della Calabria Dottorato SIACE in Scienze e Ingegneria dell'Ambiente, delle Costruzioni e dell'Energia XXXI PhD course welcome DAY – November 26°, 2015 Università della Calabria - ... 87036 Rende CS, Italy

Institute on Membrane Technology (ITM-CNR), National Research Council, Via Pietro BUCCI, 87036 Rende CS, Italy

Institute on Membrane Technology - CNR @ University of Calabria Campus

ITTM - CNR

Funding Institutions

Visiting Scientists from abroad @ ITM in 2015

Total personnel

ITM - CNR Istituto per la Tecnologia delle Membrane

Activities distribution

ITM - CNR Istitute per la Tecnologia delle Membrane Operations for CO₂ separation

Gas separation by means of ...

- Polymeric membranes
- Pd-based membranes
- ... in post-combustion capture

Pd-based membrane reactors for H_2 separation/production, CO_2 present as significant by-product

- Reformate hydrogen streams
- Steam methane reforming reaction
- Water gas shift process

... in pre-combustion capture

Consiglio Nazionale delle Ricerche

CO₂/CH₄ mixtures by....

BioGAS

Natural GAS sweetening

- CO_2/N_2 (the one focused on)
 - Involved streams have not a value
 - Pressure is required only for separation
 - The final stream is the permeate (at low pressure)
 - Low CO_2 feed concentration (10-30%)
 - Contaminants = membrane chemical stability
- CO₂/CH₄

ITM - CNR

ituto per la Tecnologia delle Mer

- A value product (CH₄) containing stream
- Pressurized stream
- The final stream is the retentate (membrahe high-side pressure)

Membrane modules

Separation design

• CO₂ recovery

>80%

• CO₂ concentration

>90%

- What technology (Absorption, adsorption, cryogenic distillation, membrane, ...)? Depends on
 - Driving force
 - Operating conditions
 - Materials
 - Efficiency
 - Environmental friendly

Robeson's permeability/selectivity trade-off

Polymeric membranes generally undergo a trade-off limitation between permeability and selectivity: as permeability increases, selectivity decreases, and vice-versa.

Robeson L.M., Journal of Membrane Science, 320, (2008), p.390

ITM - CNR

Consiglio Nazionale delle Ricerche

PON-FotoRiduCO₂

Robeson trade-off

ITM - CNR

Experimental measurements

- Temperature (room to hundred Celsius)
- Pressures ranges

ITM - CNR

tituto per la Tecnologia delle

- permeate: vacuum to a few bars
- feed: 1-10 bars (a higher pressure is possible)
- Feed composition
 - Single gas and Gas mixtures
 - Relative humidity: 0-100%
 - Other components
- Steady-state (no variation in the time)

Mixed gases CO₂:N₂:O₂=15:80:5

ITM - CNR

stituto per la Tecnologia delle Membra

METT-project (MAECI)

Liu, Donald R. **Paul**, Benny D. **Freeman** [J. membrane science 475 (2015) 204-214] well describe this behavior.

Barbieri (Cersosimo et al.) "Separation of CO_2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes", J. Membr. Science, 2015, (492), 257–262, 10.1016/j.memsci.2015.05.072

Consiglio Nazionale delle Ricerchi

Wet mixtures measurements

METT (MAECI)

ITM - CNR

stituto per la Tecnologia delle Membr

As the feed gas becomes increasingly humidified, the corresponding CO_2 , N_2 and O_2 permeance decreases.

This permeance fall is owing to a competitive sorption and also declining diffusivities owing to blockage by water clusters at a higher relative humidity [Colin A. Scholes, Benny D. Freeman, Sandra E. Kentish, journal membrane science 470 (2014) 132-137].

Barbieri (Cersosimo et al.) "Separation of CO_2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes", J. Membr. Science, 2015, (492), 257–262, 10.1016/j.memsci.2015.05.072

Consiglio Nazionale delle Ricerche

ITM - CNR

Wet and dry mixtures measurements

 CO_2/N_2 actual selectivity is higher of that based on pure gases

The selectivity is lower and it decreases as a function of the temperature

Barbieri (Cersosimo et al.) "Separation of CO₂ from humidified ternary gas mixtures using thermally rearranged polymeric membranes", J. Membr. Science, 2015, (492), 257–262, 10.1016/j.memsci.2015.05.072

METT (MAECI)

Consiglio Nazionale delle Ricerche

Barbieri (Cersosimo et al.) "Separation of CO₂ from humidified ternary gas mixtures using thermally rearranged polymeric membranes" J. Membr. Science, 2015, (492), 257–262, 10.1016/j.memsci.2015.05.072

Experimental analysis

ITM - CNR

PON-FotoRiduCO₂

F. Falbo, F. Tasselli, A. Brunetti, E. Drioli, G. Barbieri, "CO₂ separation through hollow fiber polyimide membranes", Brazilian Journal of Chemical Engineering 2014 31 1023 – 1034. http://dx.doi.org/10.1590/0104-6632.20140314s00003031.

Membrane gas transport properties

PON-FotoRiduCO₂

ITM - CNR stituto per la Tecnologia delle Membrane

Falbo F.; Tasselli F.; Brunetti A.; Drioli E.; Barbieri G. Brazilian Journal of Chemical Engineering, vol 31 n°4, pp 1023-1034 (2014)

Falbo F.; Brunetti A.; Barbieri G.; Drioli E.; Tasselli F. Applied Petrochemical Research (2015), *submitted*

from Robeson's permeability/selectivity trade-off

ITM - CNR

Consiglio Nazionale delle Ricerche

Tool (simple) for analysing the CO₂ membrane separations (from flue gas, etc.)

1D (dimensionless) mathematical model for the multi-species permeation in steady-state and co-current configuration (no sweep)

Feed/Retentate side

$$\frac{\mathrm{d}\,\varphi_{\mathrm{CO}_{2}}^{\mathrm{Retentate}}}{\mathrm{d}\zeta} = -\Theta_{\mathrm{CO}_{2}}\left(\phi \ \mathbf{x}_{\mathrm{CO}_{2}}^{\mathrm{Retentate}} - \mathbf{x}_{\mathrm{CO}_{2}}^{\mathrm{Permeate}}\right)$$

$$\frac{d\varphi_{N_2}^{\text{Retentate}}}{d\zeta} = -\frac{x_{CO_2}^{\text{Feed}}}{x_{N_2}^{\text{Feed}}} \frac{1}{\alpha_{CO_2/N_2}} \Theta_{CO_2} \left(\phi \ x_{N_2}^{\text{Retentate}} - x_{N_2}^{\text{Permeate}} \right)$$

Permeate side

Brunetti A., Scura F., Barbieri G., Drioli E., Journal of Membrane Science, 359 (2010) 115–125

In the equations φ_{CO2} , φ_{N2} are the dimensionless molar flow rate, for CO₂ and N₂, respectively and ζ is the dimensionless module length.

$$\varphi_{i} = \frac{Q_{i}}{Q_{i}^{Feed}} \qquad \zeta = \frac{Z}{L}$$

 Θ_i and ϕ are the parameters affecting the performance of a one stage membrane system, the permeation number and the feed to permeate pressures ratio, respectively.

$$\Theta_{CO_2} = \frac{Permeance_{CO_2}}{x_{CO_2}^{Feed}} \frac{A^{Membrane} P^{Feed}}{Q^{Feed}}$$

$$\phi = \frac{P^{Feed}}{P^{Permeate}}$$

 Θ_i expresses a comparison between the two main mass transport mechanisms involved: the permeating one through the membrane and the convective flux of the feed stream.

Separation analysis by Mathematical Modelling

Consiglio Nazionale delle Ricerch

Separation analysis by Mathematical Modelling

Consiglio Nazionale delle Ricerch

Separation analysis by Mathematical Modelling

Consiglio Nazionale delle Ricerch

CO₂ permeate concentration as function of CO₂ feed concentration at different selectivities for a multistage configuration

Consiglio Nazionale delle Ricerche

 CO₂ permeate concentration as function of CO₂ recovery at various selectivities and CO₂ feed concentrations. Pressure ratio=5

Consiglio Nazionale delle Ricerche

Brunetti A.; Drioli E.; Lee Y.M.; Barbieri G.; "Engineering evaluation of CO₂ separation by membrane gas separation systems", J. Membr. Sci., 2014, 454, 305-315; <u>http://dx.doi.org/10.1016/j.memsci.2013.12.037</u>

Guidelines for sustainable separations

Comparison among some important design parameters

	Membrane System	Absorption	Adsorption	Cryogenic
Operating	High (%CO ₂ >20%)		l lt alla	1 euro
flexibility	Low (%CO ₂ <20%)	Moderate	rign	LOW
Response to variations	Instantaneous	Rapid (5-15 minutes)	Rapid (5-15 minutes)	Slow
Start up after	Extremely short	1 h	1 b	8 24 h
the variations	(10 minutes)	1.0		0-24 11
Turndown	down to 10%	down to 30%	down to 30%	down to 30-50%
Reliability	100%	Moderate	Moderate	Limited
Control requirement	Low	high	high	high
Ease of expansion	Very high	Moderate	Moderate	Very low
	(modularity)			

Consiglio Nazionale delle Ricerch

Brunetti A.; Scura F.; Barbieri G.; Drioli E.; "<u>Membrane technologies for CO₂ separation</u>", J. Membr. Sci., 2010, 359, 115-125; <u>dx.doi.org/10.1016/j.memsci.2009.11.040</u>

ITM - CNR Istituto per la Tecnologia delle Membrane

Membranes and membrane operations are good candidate for sustainable chemistry and processes

• no solvents are required

ITM - CNR

ituto per la Tecnologia delle

• Less energy intensive processes

Membrane engineering, together with material science, has a crucial role for the application of membrane operations in CO_2 separation. This means ...

- integrated process design
- optimization of operating conditions
- process intensification

Contest

Some projects on this activity line

- MAECI, "METT New highly innovative membrane operations for CO₂ separation (capture) at medium and high temperature: Experimental preparation and characterization, theoretical study on elementary transport mechanisms and separation design"
 Bilateral agreement between MAECI (Italy) and MOST (South Korea).
- ✓ MIUR, Ricerca e competitività 2007-2013, PON 01_02257 "FotoRiduCO₂ Photoconversion of CO₂ to methanol fuel", ("Studio e sperimentazione di sistemi di foto conversione con luce solare di CO₂ in metanolo, da utilizzare come combustibile")
- ✓ EU, "NanoGlowa Nanomembranes against Global Warming" FP6/NMP3-CT-2007-026735
- ✓ ItalCementi S.p.A.; ENEL Produzione S.p.A.
- ✓ CNR-CSIR(India) bilateral agreement

Some other activities

Central testing lab in EU co-funded projects

Hydrogen production, upgrading and purification

 ✓ CNR-KOSEF, CNR-SRNSF and MAE/MAECI-MOST bilateral agreements, EU-GRACE, EU-HydroFueler, EU-DEMACMER, FIRB-CAMERE, ...

Membrane reactors for petrochemical processes

✓ King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Fuel Cells

- ✓ "LoLiPEM: Long-life PEM-FCH &CHP systems at temperatures higher than 100°C" GA 245339. EC-FP7/FCH JU (coordination)
- ✓ HYPOD (Advanced Devices Spa)

Water capture

✓ "EU-CapWa – Capture of evaporated Water" 2010-2013 – Co-funded by EU (GA 246074)

Innovative membrane utilizzation

✓ "OMPA - Osmotic Pressure Actuator". Funded by The Norway Research Council, through Statoil

Grazie per la vostra cortese attenzione

Thank you for your attention

Institute for Membrane Technology, ITM–CNR 87036 Rende CS, Italy

Consiglio Nazionale delle Ricerche