MISURA DELLA MASSA DEL BOSONE DI HIGGS NELL' ESPERIMENTO ATLAS AD LHC

Relatori:

Prof. Vincenzo Canale

Dott. Francesco Alessandro Conventi

Candidato: Claudio Barbieri Matricola N84000453

Tesi di Laurea Triennale in Fisica - A.A. 2014/2015

PIANO DELLA PRESENTAZIONE

> Modello Standard e Bosone di Higgs >LHC e ATLAS > Il canale $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptoni > Stima della massa del bosone di Higgs > Stima di m_H al variare della luminosità > Dipendenza dell'errore su m_H dal fondo

MODELLO STANDARD

Particelle mediatrici delle interazioni:

Interazione	Bosone	Carica $[Q/e]$	Spin	Massa [GeV]	
Elettromagnetica	γ	0	1	0	
Debole	W^{\pm}	±1	1	80.4	
	Z^0	0	1	91.2	
Forte	g	0	1	0	

Invarianza di Gauge prevede massa nulla, i bosoni W e Z hanno invece massa

Esistenza di una nuova particella: Bosone di Higgs

Meccanismo di Higgs: Rottura spontanea della simmetria

«Chiave di volta» del modello!

La teoria prevede le sue proprietà, tranne la massa

RICERCA DEL BOSONE DI HIGGS

Processi di Produzione:

- Gluon-gluon fusion (\sim 90%)
- Vector boson fusion (\sim 7,5%) 2.
- W,Z bremsstrahlung ($\sim 2\%$) 3.

tt fusion (~0,5%) **4**.

di <u>segnal</u>e

fondo

Processi di Decadimento:

LHC: LARGE HADRON COLLIDER

- > 27 Km di circonferenza
- > 100 m di profondità
- \succ $|\overrightarrow{B}| \approx 8 Tesla$
- $\succ T \approx -271, 3^{\circ}C$
- \succ Interazioni p-p
- $\succ \approx 10^9 eventi/s$

Caratteristiche	Run-I (2011-2012)	Run-II (2015-2018)
Energia nel CM (\sqrt{s})	7 – 8 TeV	13 – 14 TeV
Bunch - spacing	50 ns	25 ns
Luminosità istantanea	$10^{32-33} cm^{-2} s^{-1}$	$10^{33-34} cm^{-2} s^{-1}$
Luminosità integrata	$5.6 - 23.3 \ fb^{-1}$	$\approx 100 fb^{-1}$

ATLAS: A Toroidal LHC ApparatuS

- Sistema di magneti: genera campi magnetici che curvano la traiettoria delle particelle cariche per identificarle
- > Rivelatore interno (Inner Detector ID) [$|\eta| < 2, 5$]: misura l'impulso di tutte le particelle cariche
- > Calorimetro elettromagnetico [$|\eta| < 2,5$] e calorimetro adronico + «forward» [$|\eta| < 4,9$]: misura le energie trasportate dalle particelle. Risoluzione: e.m. $\approx 1-2\%$, adronico $\approx 10\%$.
- > Spettrometro per muoni [$|\eta| < 2,7$]: identifica e misura gli impulsi dei muoni. Risoluzione in $p_T \approx 3\%$ (muoni CB).
- > Sistema di trigger: seleziona online gli eventi da conservare, riducendo il rate da $\approx 40~MHz$ a $\approx 200~Hz$.

Barrel region [BR] ($|\eta| < 1,05$): regione più interna e più vicina al punto di collisione

> End-cap region [ER] $(1,05 < |\eta| < 2,70)$: regione più esterna e laterale

IL CANALE $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptoni

- Denominato «Golden Channel»: chiuso cinematicamente (assenza di neutrini o energia mancante), ricostruzione leptoni, buon rapporto segnale/rumore.
- Stati finali:
- $\succ \mu^- \mu^+ \mu^- \mu^+$
- $\succ \mu^- \mu^+ e^- e^+$
- $> e^-e^+\mu^-\mu^+$
- > e⁻e⁺e⁻e⁺

"Z" on shell = «reale» $ightarrow m_Z^pprox$ 91 GeV

" $Z^{(*)}$ " «virtuale»

Fondi sperimentali:

- ZZ^(*): è detto «fondo irriducibile» poiché presenta lo stesso stato finale con 4 leptoni ed è dunque molto difficile separarlo dal segnale
- > Z + jets: è costituito da un numero minore di eventi rispetto al fondo $ZZ^{(*)}$

L'OSSERVAZIONE DEL BOSONE DI HIGGS

Dopo decadi di ricerca, il 4 Luglio 2012 viene annunciata la scoperta di una risonanza con massa $\approx 125 \ GeV$: i risultati degli esperimenti ATLAS e CMS sono consistenti e hanno una significatività maggiore di 5σ , soglia di riconoscimento di una scoperta nella fisica delle alte energie. La nuova particella sembra consistente con il bosone di Higgs, ma bisogna studiarla ulteriormente nel Run-II.

EVENTI ATTESI

- > Simulazioni Monte Carlo $H \rightarrow ZZ^{(*)} \rightarrow 4l$ ($m_H = 125 \ GeV$)
- > Sezioni d'urto σ_{MS} dei processi
- > $L_{Run-I} (\approx 25 f b^{-1}) \rightarrow \sqrt{s} = 7 8 T e V$
- \succ Intervallo 110 < m_{4l} < 140 GeV

Stato finale	Segnale	Fondo $ZZ^{(*)}$	Fondo $Z + jets \in t\overline{t}$	Attesi	Osservati
4μ	6.65	7.75	2.04	16.45	22
4e	3.48	3.78	2.03	9.28	11
$2e2\mu$	4.48	5.37	1.79	11.64	15
$2\mu 2e$	3.17	3.40	2.14	8.71	12
Totale	17.78	20.29	8.00	46.07	60

Distribuzioni attese della massa invariante ricostruita dei 4 leptoni

STIMA DELLA MASSA DEL BOSONE DI HIGGS CON UN FIT DI MASSIMA VEROSIMIGLIANZA

 $P.d.f.(m_{4l}|m_H) = \alpha P_{segnale}(m_{4l}|m_H) + (1-\alpha)P_{fondo}(m_{4l})$ Densità di probabilità degli eventi: Funzione di Verosimiglianza (Likelihood):

$$\prod_{i=1}^{N} P_i(m_{4li}|m_H) = L$$

- > Segnale: Convoluzione di una Breit-Wigner con una gaussiana
- > Fondo: Polinomi di Čebyšëv

Il modello utilizzato per la totalità degli eventi è una sovrapposizione dei due

Fit di massima verosimiglianza: il valore stimato di m_H è quello che rende massima L

10000

8000

6000

4000

2000

110

Events

Per verificare la coerenza del metodo, si effettua un test generando dal modello un campione ad alta statistica di eventi (pseudodati) con m_H = 125 *GeV*. Dal fit applicato a questo campione si ottiene: m_H = 125,009 ± 0,016 *GeV*

 Fit sulle simulazioni Monte Carlo: i risultati

sono consistenti con $m_H = 125 \ GeV$

Canale	Fit di m_H (GeV)	Errore (GeV)
4μ	124.3	1.3
2e2µ	125.9	1.6
2µ2e	125.7	1.9
4 <i>e</i>	124.4	1.9
Tutti	125.33	0.73

120

125

130

135

140

m4l [GeV]

Fit sui dati	Canale	Fit di $m_H (GeV)$	Errore (GeV)
	4μ	124.7	0.8
$(\sqrt{s} = 7 - 8 TeV)$	2e2µ	124.2	1.2
$s_{ig osservato} = 27 \pm 13$	2µ2e	125.0	1.5
$n_{\text{signattors}} = 17.78$	4 <i>e</i>	124.6	1.7
	Tutti	124.50	0.66

n

$$m_{H} = 124, 50 \pm 0, 66 \; GeV$$

7 [Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments (2015)]

Compatibile con il risultato di ATLAS $m_H = 124, 51 \pm 0, 52 \ GeV$

Il fit fornisce anche il numero di eventi di segnale, che può essere comparato con le previsioni del MS mediante il Signal Strength $\mu = \frac{n_{sig\, osservato}}{n_{sig\, atteso}} = 1,50 \pm 0,73$

Compatibile con il risultato di ATLAS $\mu = 1,44 \pm 0,37$

Correlazione a 1 e 2 σ tra i valori stimati di n_{sig} e m_{4l}

Errore Sistematico: $\Delta m_{sist} \approx 0,040 \ GeV$ (energia elettroni-impulso muoni ~0,03% di m_H) Poiché $\Delta m_{sist} \ll \Delta m_{stat} \rightarrow$ margine di miglioramento

STIME DI m_H ALL'AUMENTARE DELLA LUMINOSITA'

E' possibile generare campioni a statistica maggiore (pseudodati) e valutare i risultati dei fit: ciò equivale a studiare i prossimi Run di LHC.

Stima della massa con la sua incertezza statistica all'aumentare della luminosità

Errore sulla stima della massa al variare della luminosità (4μ , $2\mu 2e$, $2e^2\mu$, 4e, tutti)

DIPENDENZA DELL'ERRORE SU m_H DAL FONDO

Significatività $\frac{s}{\sqrt{b}}$: s è il numero di eventi di segnale, b il numero di eventi di fondo. All'aumentare della significatività diminuisce l'errore su m_H . Significatività «standard»: $\approx 3,3$

E' necessario ridurre il fondo sperimentale: poiché ciò comporta una perdita di segnale, bisogna trovare un giusto metodo di reiezione e il taglio migliore che massimizzi la significatività.

Individuate le variabili che discriminano tra segnale e fondo, si costruisce un «Discriminante Multivariato» $D = \frac{L_H}{L_H + L_{ZZ}}$, dove L_H e L_{ZZ} sono le p.d.f. delle variabili per segnale e fondo.

$$L(x_1,...,x_n) = \prod_{i=1}^n p_i^s(x_i) ; \ s = H, ZZ^{(*)}$$

D ha un alto potere di discriminazione

Taglio	Efficienza	Efficienza	Efficienza	Significatività
	Segnale	Fondo $ZZ^{(*)}$	Fondo $Z + jets$	
0.1	0.976	0.814	0.951	3.534
0.2	0.932	0.664	0.856	3.675
0.3	0.876	0.541	0.725	3.806
0.4	0.805	0.429	0.586	3.910
0.5	0.715	0.325	0.440	3.994
0.6	0.601	0.229	0.305	4.014
0.7	0.460	0.142	0.175	3.951
0.8	0.290	0.067	0.076	3.682
0.9	0.109	0.016	0.022	2.750

Efficienze di selezione e significatività al variare del taglio sul discriminante

Eseguendo fit sulle simulazioni Monte Carlo della massa al variare del taglio su D, è previsto per il taglio D > 0,6 un errore minimo.

D_0	Yields Segnale	Yields Fondo $ZZ^{(*)}$	Yields Fondo $Z + jets$	Dati
0.00	17.78	20.29	8.00	60
0.15	17.00	14.90	7.24	53
0.60	10.69	4.64	2.44	29
0.90	1.93	0.32	0.17	4

Simulazioni Monte Carlo contenenti il segnale, il fondo $ZZ^{(*)}$, il fondo Z + jetse i dati ($\sqrt{s} = 7 - 8 TeV$) calcolati per diversi tagli sul discriminante

In corrispondenza del taglio D > 0, 6 si ottiene il massimo della significatività, infatti effettuando il fit sui dati con questo taglio si ottiene il minimo errore:

$$\Delta m_H = 0,40 \; GeV$$

Taglio	Stima della massa [GeV]	Errore [GeV]	
0	124.65	0.60	
0.15	124.63	0.50	Taglio D>0.6: errore minimo. Oltre si perde
0.6	124.86	0.40	
0.9	124.75	0.54 🔹	troppo segnale e la significatività diminuisce: l'errore aumenta

Signal Strength $\mu(D > 0, 6) = 1,26 \pm 0,39$

Correlazione a 1 e 2 σ tra i valori stimati di n_{sig} e m_{4l}

CONCLUSIONI

> Stima della massa del bosone di Higgs nel canale $H \rightarrow ZZ^{(*)} \rightarrow 4$ leptoni mediante fit di massima verosimiglianza applicato ai dati raccolti nel Run-I ($\sqrt{s} = 7 - 8 TeV$):

 $m_H = 124, 50 \pm 0, 60 \text{ GeV} (stat. only)$

> Previsioni per le stime di m_H nelle prossime fasi di presa dati:

 $\Delta m_{H(Run-II)} \approx 0, 4 \ GeV; \quad \Delta m_{H(Run-III)} \approx 0, 2 \ GeV$

Stima di m_H dopo aver applicato il taglio «ottimale» sul discriminante D per massimizzare la significatività statistica://

 $m_H = 124, 86 \pm 0, 40 \ GeV$

L'errore sulla massa è ridotto di oltre il 30% rispetto all'analisi standard.