New generation of Photo-Detectors

<u>G. Collazuol</u> Dipartimento di Fisica ed Astronomia - Universita`di Padova e INFN G. De Rosa Dipartimento di Fisica - Universita`di Napoli e INFN A. Gola Fondazione Bruno Kessler - Trento

Overview: trends and selected examples in

- Vacuum based Photo-Detectors
- Gaseous PD's
- Solid State PD's

... as large overview as possible w/ few details

Photo-Detectors family tree

	Gas External photoem	ission	Vacuur External p	m devices hotoemission	Solid state Internal photoemission
gas photoionization (TMAE, TEA,) and/or multiplication in gas by avalanche (MWPC, GEM,)		secondary electron multiplication Dynodes: - discrete (PMT) - continuous dynode (channeltron, MCP)		hybrid photocathode + - multiplication by ionization in Si (HPD, HAPD,) or	 PIN-Photo-diode APD, GM-APD (SiPM) Imaging CMOS, CCD Quantum well detectors Supercond. Tunnel Junc. Organic materials
	Anode: - multi-a - strip lin		anode nes RF	 multiplication by luminescent and (light amplifiers: SMART/Quasar, X-HPD,) 	odes
8 AG - Torino - IFD 2015	TMAE, CsI TEA 12.3	ra Violet (UV)	Visible 3.1	Bialkali K ₂ CsSb 2.24 1.7	Multialkali MaKCsSb (1100nm)
GC GDR	100 250		400	+ + 550 700	

New generation of Vacuum Photo-Detectors

Vacuum Photo-detectors

Quite old device but still Large area many reasons for using it

- High gain /Wide dynamic range
- Low noise
- Fast timing (MCP)
- Low price per unit area
- Weak T dependence

Dissection

1. Photo-cathode (PC) Efficiency, spectral response 2. Acceleration and Multiplication of photo-electron (Phe) 3. Signal pickup Multiplication elements / Anode

GDR AG - Torino - IFD С

Photo-cathodes

1) Bi/Multi-alkali-antimonides

 \rightarrow K/Na + Sb in bulk + Cs/Rb at surface \rightarrow poly-crystalline layers w/ high carrier lifetime → very good absorbers for photons 200-850nm eg. Na₃Sb, K₃Sb (Bialkali), Na₅KSb (S20, S25)

Weak points:

- recombination centers in poly-crystalline struct.
- active layer directly deposited on window \rightarrow electron sink due to outward band bending

Examples:

- S20 has PEA (cutoff at 820nm)
- only hot e- escape \rightarrow thin layer (60nm)
- low dark rate (<Khz/cm²)
- S25 has NEA (cutoff at bandgap, 890nm)
- \rightarrow thick layer (170nm)
- higher dark rate (10KHz/cm²)

2) III-V semiconductors

- → GaAs, GaAsP bulk + Cs for NEA
- \rightarrow very pure mono-crystalline layers
- \rightarrow easy doping and hetero-junctions

Weak points:

- extreme sensitivity to over-exposure and ion feed-back
- high dark rate (10KHz/cm²)

Note: alkali metals are very strong oxidizers

 \rightarrow the smallest amount of O₂or H₂O totally

burn any cathode

→ ultra high vacuum (10⁻⁹ mbar) needed

G.Collazuol – Lectures on Photodetectors - IDPASC school Frontier Detectors 2013

Photo-cathodes

(poly)-crystalline semiconductor materials Photo-cathode: most crucial element in any PMT type → relatively complex working principles

→ complex construction → still **room for improvement** !

 \rightarrow since last 10 years revived interest in R&D for new photo-cathodes

New generation of Photo-cathodes

Strong press for new high QE photo-cathodes from Astro-particle and large volume Neutrino experiments Cherenkov light \rightarrow sensitivity to single photon

R.Myrzoyan – Light Sensors for Astro-Particle physics – ICRR 2014 Huge progresses for multi-alkali by Hamamatsu (Japan) and Electron Tubes Enterprises (UK)

- QE towards 40% (*)
- CE better than 90%
- \rightarrow PDE x1.5 improvement

(*) due to "better crystallinity"

Recent progress of photocathodes for PMTs

International Workshop on New Photon Detectors (PD09) Shinshu University Matsumoto Japan

Motohiro Suyama¹

24-26 June 2009

Electron Tabe Division, Homomotsu Photonics K.K. 314-5 Shimokonzo, Ivoia 438-0193, Japan E-mail: sayama@etd.hpk.co.jp

Kimitsugu Nakamura

Electron Tabe Division, Hamamatan Pholonics K.K. 314-3 Shimohanzo, Iwata 438-0193, Japan E-mail: kimi tugu@etcl.hpk.co.jp

M.Suyama PhotoDet 2009

New generation of Photo-cathodes

"Open-source" developments by the LAPPD collaboration

H.Frisch (U.Chicago), O.Siegmund (U.C.Berkeley), R.Wagner (ANL) et.al + industry http://psec.uchicago.edu

O.Siegmund – Challenges in photo-cathode deposition for Large Area MCP Proximity Focus Devices – 2nd Photo-cathode workshop – Chicago 2012

Opaque GaN ALD MCP 25mmTube

Reflectivity depends on angle of incidence and cathode thickness. Structuring of the photocathode can further reduce loss due to reflection.

Increasing the electron MFP will improve the QE. Phonon scattering cannot be removed, but a more perfect crystal can reduce defect and impurity scattering

New generation of Photo-c

= Photocathode

- 1) Search for new photo-cathode (PC) materials - bi- and multi-alkali revisited (eg. Li₂CsSb)
- III-Nitrides (eg. GaN, Al_xGa_{1-x}N)
- II-VI (eg. ZnO, Zn_{1-x}Mg_xO)

Secondary electro

- 2) Anti-reflecting structures
 - 3) Electron emission enhancement

Photocathode

- Piezo-electrically enhanced
 - photo-cathodes (no Cs; in air)
- Electric field assisted emission

LAPPD collaboration $\rightarrow 1^{st}$ and 2^{nd} Photo-Cathode Workshops (2009 and 2012) U.Chicago

Electron Multipliers

discrete multiplication

continuous multiplication

ഹ

H.van der Graaf – The Tipsy soft photon detector - NDIP 2014

discrete multiplication

Transmission dynodes revisited (new materials)

Timed Photon Counter TiPC, Tipsy

Fast: electron mobility is highest for free electrons in vacuum

Low noise: no bias current

- Thin, planar, light single soft photon detector
- Electron crossing time $t_c = D \sqrt{(2 \text{ m/qV})} = 5 \text{ ps}$ for V = 150 V, D = 20 μm
- Electron path: quite straight line towards next dynode
- 30 k e- enough for digital signal on pixel input pads: 7 dynodes adequate
- Signal response after 7 x 5 ps = 35 ps
- Time resolution determined by last electron crossing time: ~ 2 ps
- Spatial resolution determined by pixel granularity (55 µm x 55 µm)
- No noise from electron multiplier, no bias current from electron multiplier
- Radiation hard
- Operates in magnetic field

But:

2015

IFD

ī

- Torino

GDR AG

С

- Secondary electron emission yield not known
- Very strong electric field between dynodes: Fowler-Nordheim limit (10⁹ V/m)
- <u>QE limited by QE of classical photo cathode (20 40 %)</u>

Electron Multipliers - MCP

Main problem: Ion Feedback (IFB)

continuous multiplication

ഹ

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

Fast ageing due to IFB countermeasure (in addition to electron scrubbing):

- 1) make robust photo-cathodes (developed at BINP for FARICH)
- 2) investigate alternative MCP materials (borosilicate, Alumina, Silicon)
- 3) implement ion barrier films \rightarrow Atomic Layer deposition (ALD)

Atomic Layer deposition (ALD)

Three-step deposition process

- Resistive layer
- Secondary emission layer
- Electrode layer

Optimization of MCP resistance and SEE

- Independently for each film
- For a given gain, lower operating voltage

Allow use of insulating materials other than Pb-glass

T.Gys – NDIP 2014

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

PMTs in a collider experiment, Belle II

MCP-PMTs for TOP counter (barrel π/K PID)

TOP / Aerogel RICH

- Developed with Hamamatsu
- 1PE detection, TTS~40 ps, QE~28%, Usable in 1.5T
- Lifetime improved by x ~10 by Atomic Layer Deposition coating
- Mass production of >500 PMTs finished and performance checked

Latest developments also within the TORCH project (Time of internally Reflected CHerenkov light) for low-p PID future LHCb upgrade

ഹ

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

2015

- Torino - IFD

GDR AG

С

Key Issues for ALD Borosilicate MCPs

Current MCP devices have specific limitations due to the nature of the structure and processing of conventional <u>MCPs</u>. Atomic layer deposited (ALD) <u>MCPs</u> made on borosilicate substrates provide a unique way to improve on current devices or make new device types.

Borosilicate substrate:-

Large areas can be made Larger open area ratios Low/no radioactive content Low outgassing High temperatures

Strong & clean compared with standard MCP glass large detectors for security applications – higher photon /electron/ion detection efficiency lower background for security applications longer device lifetimes, shorter process/fab times deposit materials & cathodes not otherwise possible

Atomic layer deposition:-

Resistance tailored to suit

High secondary emissive layer Stable secondary emissive layer

Decoupled from substrate, many materials possible can make a wider range than standard MCPs allowing high local counting rates better pulse height at low gain, better gain faster gain burn-in, or none needed – very long lifetime & durability

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

20cm ALD-MCP & Sealed Tube Development

LAPPD collaboration development of 20cm ALD MCPs and sealed tube with bialkali cathode and stripline anode for 2D imaging and <10ps timing.

Also see Incom poster.

First tube did not seal, making new tubes this summer

20cm, 20µm pore, Al₂O₃ SEY, MCP pair image with 185nm non-uniform UV illumination. Cross delay line photon counting anode. Image striping is due to the anode period/charge cloud size modulation.

ഹ

2015

IFD

ī.

Torino

Т

GDR AG

С

Large area High Efficiency PMT's \rightarrow B&L dynodes and HAPD

New photodetector R&D for Hyper-K

- Full picture of v osc. (leptonic CP violation, ...)
- Astrophysical v (solar v, supernova v, WIMP, ...)

99,000 20" PDs (11,129@SK) Outer Detector (Veto) 25,000 8" PDs (1,885@SK)

High-QE Hybrid PD High-efficiency PMT Super-K PMTs (R3600) usable also for Hyper-K. R&D R&D Socmb Socmb High-OE New photodetectors being developed for QE ~30% QE ~30% Better performance CE ~95% CE ~93% Lower cost Avalanche diode Box&Line dynode

B&L type multiplication performs better:
1) Collection efficiency (wide first dynode)
2) Fast timing response (well defined e- path) and have lower cost (simpler structure)

ഹ

- 8" HPD prototype (5mm \$\phi AD) has shown good performance
- Low S/N ratio is an issue for 20" HPDs
 - Due to large junction capacitance (~800 pF) of a 20mmφ AD
 - HPD with a segmented AD is under evaluation. Lower capacitance AD production is also being tried
 - Development of lower noise preamplifier is in progress

thread-off high Collection Efficiency (large area APD) vs low noise (small area) $_{21}$

ഹ

4PEs

Photoelectron

MCP PMT – Hybrids w/ APD → multi-channel

Dedicated APD layout for

- kinematic E threshold
- protection against alkali
- HV insulation
- mitigate radiation effects

Development for BELLE-II Aerogel RICH

Note: improvement in timing resolution compared to same geometry PMT tubes (in particular for 8" and 20" devices Y.Suda RICH2013)

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

- Si-Anode + RO Chip \rightarrow HPD /ISPA tube
- APD \rightarrow HAPD
- SiPM \rightarrow VSiPMT
- Back thinned CCD \rightarrow EBCCD
- Back thinned CMOS \rightarrow EBCMOS

Large Area HPD / small number of pixels

Imaging / Megapixel devices

One the few relevant Photo-detector developments pushed by LHC

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

Vacuum Silicon Photo-Multiplier Tube

An innovative design for a modern hybrid photo-detector based on the combination of a Silicon PhotoMultiplier (SiPM) with a Vacuum PMT standard envelope

MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM)

VSiPM – industrial prototype

2013: Hamamatsu realized two industrial prototype, by arranging a no-windowed SiPM inside a commercial Hamamatsu HPD: an outstanding proof of feasibility of the device.

- Excellent photon counting capabilities
- Photon Detection Efficiency: ≈23% @ 407nm
- High gain: $10^5 \div 10^6$, HV-stable
- Good timing performances: TTS < 0.5ns
- Low power consumption: 5mW (amplifier stage)
- SPE resolution 17.8%
- Peak-to-valley ratio ≈ 65
- Efficiency is highly stable over 3200 V
- No need for high voltage stabilization

С

New generation of Charge Multipliers MCP PMT – Hybrids w/ APD – w/ SiPM (Vacuum-SiPM) new VSiPM UV-Vis prototypes 1-3" Photo-Cathode VSiPMT devices are under construction by Naples group in collaboration with Bari/CNR (photocathode) FBK (e-SiPM for electrons) National Industries (envelope, dom, tube)

``LEGO" prototype with
CsI based photocathode and Hamamatsu e-SiPM
→ tests ongoing at DAFNE UV source
results soon.... stay tuned!

Naples project founded by INFN gr.5, ASI, STAR UNINA Federico II

Photo-detectors – specific applications

- High Pressure environment
- Operation in magnetic field
- Low Temperature
- Radio-purity
- . . .

Large Area & High Pressure

Km3Net experience: Multi-PMT system with small PMTs (DOM)

Use small PMTs !

- \rightarrow Photon counting
- → Small TTS
- \rightarrow Negligible effects due to magnetic fields
- \rightarrow Almost uniform coverage
- → High granularity (impr. background rej.)
- → Directional sensitivity (impr. recon.)
- \rightarrow Several manufacturers of small PMTs

T2K-Naples R&D for a new multi-PMT

for TITUS and Hyper-K WCh detectors:

- New acrylic vessel to reduce the dark rate (radio-impure in glass vessels)
- PMT Read-Out system
- Other PD considered: VSiPMT, SiPM matrices, ...

Km3Net DOM

Photo-detectors and electronics arranged inside a pressure resistant vessel

New generation of Gaseous Photo-Detectors

Gaseous Photo-detectors (UV)

Large Area UV sensitive PD with CsI photo-cathode and MWPC readout \rightarrow successful RICH detectors (stable operation and honest performance)

New generation of GPDs → ThGEM

- GEMs operated in HEP experiments as tracking devices at gain $\leq 10^4$ (not enough for single photon)
- Thick-GEMs →
 - simple manufacturing (mech. drill. of PCB) and assembly
 - Hole diameter : 0.2 - 1 mm
 - Pitch : $0.5 - 5 \, \text{mm}$
 - Thickness : .

Rim:

.

 $0 - 0.1 \, \text{mm}$

 $0.4 - 3 \, \text{mm}$

- mechanical robustness (also against sparks)
- optimal alternative for single photon detection (spatial resolution ≤ 1 mm)
- large gain (~ 10⁴ /stage), 7-8 ns time resolution
- Extensive characterization by WIS, COMPASS, ALICE
 - R. Chechik et al., NIM A535 (2004) 303
 - C. Shalem et al.: NIM A558 (2006) 475 and NIM A558 (2006) 468
 - A. Breskin et al. ,NIM A598 (2009) 107
 - V. Peskov et al., JINST 5 (2010) P11004

M. Alexeev at al., NIM A 617 (2010) 396

- Neon based mixtures (\rightarrow large gain at low HV) CH₄ or CF₄ (\rightarrow reduced ph.e backscattering)
- E_{drift} and geometry \rightarrow optimize ph.e transfer
- rim \rightarrow stable operation without sparks
- \rightarrow high gain (~10⁵) high rate operation (100 Hz/cm²) ... IBF still an issue (\rightarrow new structures) 31

New generation of GPDs → Hybrids

R&D for COMPASS RICH-1 upgrade

- Positive experience with large area MicroMegas
 - Large suppression of IBF (~ E_{mult}/E_{drift})
- Spread of avalanche from THGEM pre-amplification → sharing of final amplification in various cells of MM, spark-free operation
- In Ar/CH4 total $\Delta V \sim 4$ kV instead of 8 kV with triple THGEM + smaller no. of electrodes

A. Di Mauro– Status and perspectives of GPD – RICH 2013

F. Tessarotto, talk at MPGD 2013 – Zaragoza 02/07/2013 S. Levorato, proceedings IEEE 2013

New generation of GPDs → Visible

Operation in GPD of photoconverters sensitive in the visible range (e.g. alkali-antimony: Cs-Sb; bi-alkali: K-Cs-Sb, Na-K-Sb) is affected by:

 very high reactivity with O₂ and H₂O (QE degradation)

Usage of very high purity gas systems, UHV material selection, operation in sealed mode, protective "nanofilms"

- large probability of ion-induced secondary electron emission: γ⁺ ~ 10⁻²
- Gas gain in "open geometry" detectors (MWPC) limited to ~10² for stable operation:

γ⁺ G < 1

 In "close geometry" of hole-type MPGD with reduced IBF:

 γ^+ IBF G < 1 \rightarrow G ~ 10⁵ requires IBF ~ 10⁻⁴

A. Di Mauro- Status and perspectives of GPD - RICH 2013

E. Shefer et al.: NIM 433 (1999), 502; J. Appl. Phys 92 (2002), 4758

- PIN-Photo-diode
- APD

- SPAD - GM-APD (SiPM) Imaging devices / Megapixel

- CMOS, sCMOS
- CCD, EMCCD

Compound semiconductors

Organic semiconductors Carbon nanotubes

Superconductive Single Photon Detectors

SSPDs – APD – still largely in use

>120.000 APD's in CMS

Barrel: 2 x APD, Hamamatsu S8148

APD biased for low gain M < 1/k

- fast exponential growing due to only electrons
- high number of carriers in high field region at given time:
 → small gain fluctuations
- Timing fluctuations are small: limited only by the length of depletion region
 → time resolution limited by electronics
 (high Amplification for low light signals)

Position

Electron

njection

 $\beta_p = 0$

Time

APD biased for high gain M > 1/k

- hole ionization events contribute
- → increase of gain is the result of small number of large pulses due to one or more hole ionization initiated secondary avalanches (ENF)
- low number of carriers in high field region at given time and hole ionization near cathode resulting in larger pulses
 → large gain fluctuations
- slow buildup and long pulse due to many carriers over long time
- → large timing fluctuations

Devices with high multiplication noise are not good for single photon counting

Single photon counting is possible, but at low temperature (T~77K) and with slow electronics (PDE~20%)

A. Dorokhovet.al., JournalMod.Opt. v51 2004 p.1351

Hayat et al J. Lightwave Tech. 24 (2006) 755 Fox et al Rev. Sci. Instr. 70 (1999) 1951

Single Carrier

Multiplication

· Fast

· Good

SSPDs – APD – still largely in use

SPAD Arrays with electronics "integrated"

Digital vs Analog SiPM

T.Frach - Heraeus Seminar 2013

- for each light pulse → output is:
 time-stamp and number of photons
 - control of individual cells
 - O(500ns) RO dead time (upon trigger)

- Analog sum of charge pulses
- Analog output signal

• Digital data output

d-SiPM:

Trends and optimal operation of Analog SiPMs:

- tiny cells
- low Temperature

Tiny cell → better performances

Many small cell SiPM types available → Fill Factor improving (> 50%)

- tiny cells (\rightarrow 10-15µm) \rightarrow HPK, FBK-Advansid, NDL, MPI-LL, ...
- micro cells ($\rightarrow \mu m$) \rightarrow Zecotek, AmpliticationTechn.

tiny cell MPPC (2012) by Hamamatsu

Reduction of all the feature sizes

- Contacts
- Resistor
- ..

Reduction of the active-to-border distance (L)

Circular active area (smallest cells)

- · No corners (with lower field)
- Hexagonal cells arranged in honeycomb configuration

Lower Rq

· For even faster recharge

UHD technology

SEM images

Microcells separated by trenches (7.5 um)

Finished SiPM (10 um)

Reduction of all the feature sizes

- Contacts
- Resistor
- ..

Reduction of the active-to-border distance (L)

Circular active area (smallest cells)

- · No corners (with lower field)
- Hexagonal cells arranged in honeycomb configuration

Lower Rq

· For even faster recharge

UHD technology

SEM images

7.5 um Microcells separated by trenches (7.5 um)

Finished SiPM (10 um)

Measurements after Irradiation

- FBK 1 mm² 12 micron cell with thin epitaxial layer

ഹ

201

IFD

ī

Torino

GDR AG

Alberto Gola - NSS 2015

Applications of tiny cells

Calorimetry

- CMS calorimeter Phase II Upgrade → R&D funding.
- Reduced non-linearity at high energy thanks to high cell density and fast recharge time.
- Reduced correlated noise.

Applications requiring radiation hardness

- Small cells are less sensitive to the effects of radiation damage.
- CMS calorimeter Phase II Upgrade.

Prompt Gamma Imaging in Proton Therapy

- Requires larger dynamic range with respect to typical SiPM applications in medical imaging (PET, SPECT..).
- High-rate.

Functional characterization of NUV-HD FBK Silicon Photomultipliers from 300 K to 40 K

¹⁾Alberto Gola, ¹⁾Fabio Acerbi, ¹⁾Alessandro Ferri, ²⁾George Korga, ³⁾Andrea Mandarano, ¹⁾Giovanni Paternoster, ¹⁾Claudio Piemonte, ^{4,5)}Alessandro Razeto, ¹⁾Veronica Regazzoni, ⁴⁾Davide Sablone, ³⁾Claudio Savarese, ¹⁾Nicola Zorzi

November 4, 2015

2015

IFD

- Torino -

GDR AG

С

After-pulsing

GC GDR AG - Torino - IFD 201

ഹ

Standard field

Low-field

The DCR of the NUV-HD LF is extremely low: < 10 mHz / mm².

It is possible to build 100 cm² SiPM tiles with DCR < 100 Hz!

The correlated noise is under control, also thanks to the increase of the recharge time constant. The signal amplitude is not attenuated at cryogenic temperatures.

It is possible to readout a 10 cm² SiPM tile with one electronic channel, obtaining relatively fast signal and photon counting capability.

Single-photon spectrum visible!!

- low noise
- very uniform behavior of the SiPMs!!

27

GM-SSPD w/ compound semiconductors

New generation of SSPDs – Compound

Improvement factor of GaAs compared to silicon

New generation of SSPDs – Compound

Harmond - NDIP 2014

DE vs. DCR @ 770 nm

Organic Semiconductors

Carrier mobilities in organic thin films

Material

Electron (e) or hole (h) Reference

mobilities $(cm^2/(Vs))$

Organic				
Polythiophene (spin-coated films)	$10^{-4} - 10^{-2}$ (h)	[21]		
Polythiophene (aligned by drawing method) parallel to the alignment direction perpendicular to the alignment direction	$0.9*10^{-4}$ (h) $7.4*10^{-4}$ (h)	[22] [22]		
Polythiophene (printed)	0.1 (h)	[20]		
MDMO-PPV/PCBM (spin-coated films)	$2*10^{-7} - 5*10^{-6}$ (h), $2*10^{-5} - 4*10^{-4}$ (e)	[23] [23]		
Oligothiophene	0.1 - 0.5 (h)	[24]		
Pentacene (polycrystalline)	0.3 - 1.0 (h)	[25]		
Pentacene (single crystal)	2.0 (h)	[26]		
Anorganic				
c-Si	1400 (e), 480 (h)	[27]		
c-GaAs	8000 (e), 400 (h)	[28]		

Bonnassieux - NDIP 2011

ഹ

600

Wavelength [nm]

700

800

500

400

New generation of SSPDs - OPD

Printed OPD devices on large area (Gen1)

Fully printed OPD devices (>1000/sheet)

Custom printed OPD designs

2015

CEA and ISORG (www.isorg.fr)

New generation of SSPDs - OPD

- Fully solution-processed and flexible visible imager (OTFT + OPD),
- Collaboration between CEA/ISORG/plastic Logic (Flexi Award 2014),
- Demo substrate size: 50x50mm,
- 96x96 pixels,
- Pixel size = 175µm,
- Pixels spacing = 200µm (<30µm for next demo),</p>
- Process compatible with large area.

CEA and ISORG (www.isorg.fr)

Organic advantages

- · Metallic and semiconducting properties by doping
- · Combination of plastic with electronic properties
- Property engineering
- · Solubility in organic solvents, variable processibility
- · Use of printing technologies
- No vacuum and no high temperature processes

Disadvantages

- · Low integrated devices and circuits
- Degeneration in O₂- and H₂O-atmosphere (→ need passivation)

Integration with CMOS

The combination of organic semiconductors with a CMOS-chip offers advantages compared with a conventional CMOS-sensor:

- high photosensitivity -> fill factors up to 100 %
- wavelength tunability -> sensors for infrared/ultraviolet region
- inexpensive fabrication
- subwavelength grading for optimized performance and polarization sensitivity

High absorption coefficients of organic materials,

Low-cost production

SSPDs – CNT-Si heterojunction

0.0

600 700 800 900

Wavelength (nm)

0.0 0.5 1.0

1.5 2.0

Drain Voltage (V)

2.5 3.0

New generation of SSPDs - Si-CNT

Superconducting Single Photon Detectors

New generation of SSPDs – "SSPD"

Superconducting Nanowire Single Photon Detectors

Evolution in time of the normal region (in red) generated by a photon absorption in a current biased super-conduting nano-wire

Black arrows indicate the current

When the entire cross section is normal the nano-wire temporarily switch to resistive state

G.P.Pepe et al – SPIN-CNR Napoli

New generation of SSPDs – SNSPD

SNSPDs working principle: exploit the fast and temporary phase **transition** from the superconducting to the normal state produced by any type of radiation (photons, ions, neutral particles, electrons....)

SNSPD features:

- free-running (no gate)
- few ns dead-time
- no after-pulsing
- photon counting

Efficiency	Jitter	Dark	Max count	Operation
@ 1550 nm	(ps)	counts	rate	temperature
WSi: 90%	150	1 kHz	200 MHz	≤ 3 K
NbN: 57%	30	10 kHz	1 GHz	≤ 5 K

New generation of SSPDs – SNSPD

ercond. Sci. Technol. 25 (2012) 063001

G.P.Pepe et al – SPIN-CNR Napoli

Topical Rev

New generation of SSPDs – SNSPD

Conclusions

Solid state PDs, lively field, trends in many directions
 → Silicon continuous improvements (ruthless)
 → Compound Semicond. no show-stopper but cost
 → Organic Semicond. not easy bet as it may seem

Vacuum PDs are not dead at all → new photo-cathodes → more and more hybrids

Gaseous PD focused on RICH

- → still promising (single UV photon over large area)
- \rightarrow hybrids and new structures
- \rightarrow Visible light more critical than UV

Additional material

Photo-detection and Main Parameters

multi-step process

Photo Conversion

Emission in vacuum: → low detection efficiency → low dark count rate

- Primary Charge carrier Collection and Transport
- Charge Multiplication

Internal charge multiplication:

- \rightarrow better Signal/Noise ratio
- → intrinsic fluctuations in amplitude and timing

Primary/Secondary Charge Collection

- Photo-detection efficiency (PDE)
- Sensitivity spectrum
- Active area / Fill factor
- QE (internal/external)
- primary carrier transport eff.
- multiplication efficiency
 - Signal resolution
 - gain → amplitude fluctuations (single photon sensitivity)
 - timing fluctuations
 - spatial resolution
- intrinsic: dark charge generation
- multiplication noise

• Noise

- correlated: after-pulsing, cross talk
- external: electronics ENC
 - Rate capability
 - dead time, double pulse resolution
 - gain \rightarrow photon/ion feedback
 - gain \rightarrow space charge effects
 - gain \rightarrow sparks
 - Ageing
 - Photo-cathode degradation
 - rad. tolerance
- Environmental
- Operation in B field
- Operation in vacuum
- Low Temperature 70

Photo-extraction

Solid materials (usually semiconductors)

Multi-step process:

 absorbed γ's impart energy to electrons (e) in the material; If E_γ > E_g, electrons are lifted to conductance band.
 → In a Si-photodiode, these electrons can create a photocurrent. → Photon detected by

Internal Photoeffect.

However, if the detection method requires extraction of the electron, 2 more steps must be accomplished:

2. energized e's diffuse through the material, losing part of their energy (~random walk) due to electron-phonon scattering. $\Delta E \sim 0.05$ eV per collision. Free path between 2 collisions $\lambda_f \sim 2.5$ - 5 nm \rightarrow escape depth $\lambda_e \sim$ some tens of nm.

 Only e's reaching the surface with sufficient excess energy escape from it → External Photoeffect

 $E_{_{\gamma}}=h\,\nu>W_{ph}=E_G+E_A$

Photo-extraction - organics

Combination of Donor and Acceptor material

C.W. Tang, Appl. Phys. Lett. 1985, 48, 183

1. Light Absorption - η_{abs}

3. Exciton Dissociation - nct

4. Charge Collection- η_{cc}

 $\eta_{EQE} = \eta_{abs} \eta_{ED} \eta_{CT} \eta_{CC}$
Photo-detection steps

1. Photo-electric conversion with or without emission in vacuum

Emission in vacuum implies

 \rightarrow low detection efficiency

 \rightarrow low dark count rate

...source of differences between vacuum and solid state devices including multiplication mechanisms...

2. Internal charge multiplication

Charge multiplication within the device implies

- \rightarrow better Signal/Noise ratio (wrt external amplification)
- \rightarrow intrinsic fluctuations in amplitude and timing (depending on the multiplication mechanism)

"external"

photo-emission

internal" photo-emission

γ

Detector window

Vacuum

Photo-Cathode

e-

alor

photon

epletion region

ഹ

201

"the best electron is a free electron"

New generation of Charge Multipliers

MCP PMT - Hybrids w/ APD - w/ SiPM (Vacuum-SiPM)

Borosilicate Substrate Atomic Layer Deposited Microchannel Plates

Micro-capillary arrays (Incom) with 10µm, 20 µm or 40µm pores (8° bias) – borosilicate glass. I/d typically 60:1, but can be much larger. Open area ratios from 60% to 83%. Fabricated with using hollow tubes (no etching). Separate resistive and secondary emissive layers are applied (ANL, Arradiance) using atomic layer deposition to allow these to function as MCPs. ALD secondary emissive layers can also be applied to "standard" MCPs to improve yield.

Pore distortions at multifiber boundaries, otherwise very uniform.

Photo of a 10 µm pore, 60% open area borosilicate micro-capillary ALD MCP.

O.Siegmund – Application of AL-Deposited MCP to imaging PD with High Time Resolutoin - NDIP 2014

ഹ

Large Area Photo-Detectors \rightarrow H-APD

moderate "Bombardment" gain + low avalanche gain

Developements (Hamamatsu) for various Cherenkov based detectors \rightarrow Belle II ARICH (baseline) S.Nishida at RICH 2013 \rightarrow Hyper-Kamiokande (option) S.Hirota at RICH 2013

New generation of Charge Multipliers

MCP PMT – Hybrids → Megapixels

ഹ

77

New generation of GPDs → Hybrids

ഹ

Gaseous Photo-detectors (UV)

Experiment	RICH configuration/ Cherenkov radiator	PID	Trigger rates	Photodetector type/ area	
HADES @ GSI	Mirror focusing/ C ₄ F ₁₀ gas	e+/e- 0.1-1.5 GeV/c	~ 10 ⁵ Hz	MWPC/ 1.5 m ²	
COMPASS @ CERN/SPS	Mirror focusing/ C ₄ F ₁₀ gas	π/K 3-55 GeV/c	~ 5x10 ⁴ Hz (beam rate 40 MHz)	MWPC/ 5.5 m ²	
HALL-A @ JLAB	Proximity focusing/ C₀F1₄ liquid	π/K 0.8-2.4 GeV/c	10⁵ Hz	MWPC/ 1.2 m ²	
ALICE @ LHC	Proximity focusing/ C ₆ F ₁₄ liquid	π/K 1.5-3 GeV/c K/p 2-5 GeV/c	104 Hz	MWPC/ 10.5 m ²	
U _{sen} =500V Gate wires 20µm U _{se} =0V Anode wires 20µm U _{sen} =2,5 kV Csi+RSG Pad cathode PCB K. Zeitelach et al., NIM-A 433	CH, 7,000 CH, 7,000 1,165mm CH, 7,000 1,1	8 (1979), 84 phite spray Prelevant Photo-determination	ector developments	s pushed by LHC	

UDH SIPM FBK

Summary of layouts							
Cell size (ur	n) Equivalent square cell (um)	Cell density (cells/mm²)	Fill Factor (L = 0.75 um)	Fill Factor (L = 1.25 um)			
7.5	7	20530	57.1%	40.3%			
10	9.3	11550	68.1%	54%			
12.5	11.6	7400	74.5%	62.1%			
L = 0.75 ur	n 7.5 um			12.5 um			
		Layout of di	fferent microce	ells.			
November 3, 2015	Albe	Alberto Gola – NSS 2015					

7

Optimizing signal shape for timing

Pulse shape parameters

$$V(t) \simeq \frac{Q}{C_{q}+C_{d}} \left(\frac{C_{q}}{C_{tot}} e^{\frac{-t}{T_{sov}}} + \frac{R_{load}}{R_{q}} \frac{C_{d}}{C_{q}+C_{d}} e^{\frac{-t}{T_{sov}}}\right) = \frac{QR_{load}}{C_{q}+C_{d}} \left(\frac{C_{q}}{T_{fast}} e^{\frac{-t}{T_{sov}}} + \frac{C_{d}}{T_{slow}} e^{\frac{-t}{T_{slow}}}\right)$$

$$\Rightarrow gain \qquad G = \int dt \frac{V(t)}{q_{c}R_{load}} = Q/q_{c} = \frac{\Delta V(C_{d}+C_{q})}{q_{c}} \text{ independent} of R_{q}$$

$$\Rightarrow charge ratio \qquad \frac{Q_{slow}}{Q_{fast}} \sim \frac{C_{d}}{C_{q}}$$

$$\Rightarrow peak voltage on R_{load} \qquad V_{max} \sim R_{load} \left(\frac{Q_{fast}}{T_{fast}} + \frac{Q_{slow}}{T_{slow}}\right) \qquad dependent on R_{q} (increasing with 1/R_{q})$$

$$= \frac{C_{r}}{C_{q}} = \frac{100F}{C_{q}} \Rightarrow peak height ratio \qquad \frac{V_{slow}}{V_{max}} \sim \frac{C_{d}C_{tot}R_{load}}{V_{fast}} = \frac{C_{r}}{C_{q}^{2}} \qquad increasing with C_{d} and 1/R_{q}$$

$$\Rightarrow spike enhancement \rightarrow better timing \rightarrow spike enhancement \rightarrow better timin$$

SSPDs – Organic Semiconductors

Organic advantages

- · Metallic and semiconducting properties by doping
- · Combination of plastic with electronic properties
- Property engineering
- · Solubility in organic solvents, variable processibility
- · Use of printing technologies
- No vacuum and no high temperature processes

High absorption coefficients of organic materials,

Low-cost production

Long-term stability is still a critical point

Disadvantages

- · Low integrated devices and circuits
- Degeneration in O₂- and H₂O-atmosphere

Integration with CMOS

The combination of organic semiconductors with a CMOS-chip offers advantages compared with a conventional CMOS-sensor:

- high photosensitivity -> fill factors up to 100 %
- wavelength tunability -> sensors for infrared/ultraviolet region
- inexpensive fabrication
- subwavelength grading for optimized performance and polarization sensitivity

Timing (single photon) vs Area

Market price

