IFD2015 INFN Workshop on Future Detectors 16-18 December 2015 - Torino - Italy

New Trends in Calorimetry

Gabriella Gaudio and Paolo Meridiani INFN Pavia e INFN RomaI

Upgrades and Future Experiments

LHC / HL-LHC Plan High Energy Frontier

									447-34	
		LS1	13-14 TeV	EIS	LS2	14 Iev		LS3	14 IeV	ene
	7 TeV 8 TeV	splice consolidation button collimators R2E project	Ş	SPS CC	injector upgrade cryogenics Point 4 dispersion suppression collimation		cryolimit interaction regions	HL-LHC installation	5 to 7 x nominal luminosity	
	2011 2012	2013 2014	2015 2016	2017 20	18 2019	2020 2021	2022	2023 2024	2025	2035
	75% nominal luminosity	experiment beam pipes	nominal luminosity		experiment upgrade phrase 1	2 x nominal lumir	radiation damage nosity	experiment upgrade phas	e 2	
	30 fb ⁻¹			150 fb ⁻¹			300 fb ⁻¹			3000 fb ⁻¹ lumino
	Ecm,	L_{f} ,	<i>L</i> ,	Region	Att	ilio's 1	alk	Europe	U\$ NOv4	Japan
CEPC	1 ev	кт 54	5.10 ³⁴ /ID	China	-		v		µBoone,,	T2K, HyperK
ECC	0.25	100	5.10 ³⁴ /ID	CEDN					DUNE	
FCC-ee	0.25	100	5·10 ⁻⁷ /IP	CERN			В	LHCb		Belle II
ILC	0.5	36	$2 \cdot 10^{34}$	Japan						
CLIC	3	60	$5 \cdot 10^{34}$	CERN			1/	11400		кото
μμ-Collider	6	~20	$2 \cdot 10^{34}$	US?			ĸ	NA62		TREK-E36
SPPC	~50	54	5·10 ³⁴	China					Mu2e	COMET
FCC-pp/VLHC	C 100	100	5·10 ³⁴	CERN/U	JS		h	MEG II	g-2	DeeMe a-2. EDM

High Intensity Frontier

High resolution Calorimetry

80

60

60

80

100

m"/GeV

For future colliders, jet energy resolution will be a determinant factor of understanding high energy physics.

Required to have best possible di-jet mass resolution for narrow resonance observation At very least one need to distinguish W/Z hadronic decays

W/Z sep =
$$(m_Z - m_W)/\sigma_m$$

Jet E res.	W/Z sep
perfect	3.1 σ
2%	2.9 σ
3%	2.6 σ
4%	2.3 σ
5%	2.0 σ
10%	1.1 σ

120

Istituto Nazionale di Fisica Nucleare

High Rate Calorimetry

Charged Lepton Flavor Violation: hint for new physics rare events => high rate

 $\mu - + (A,Z) \Rightarrow e - + (A,Z)$

the coherent, neutrinoless conversion of a muon to an electron in the field of a nucleus Negligible in the $SM(10^{-52})$

for the sensitivity goal ~ 6×10^{17} stopped muons 3 year run (6×10^{7} sec) $\Rightarrow 10^{10}$ stopped muon/sec

Istituto Nazionale di Fisica Nucleare

Rad-Hard Calorimetry

and electronics *Total Ionizing Dose (TID) *Mainly due to photons, electrons and positrons *Measured in Gray (Gy), I Gy = I J/kg = 100 rad * Non Ionizing Energy Loss (NIEL) / equivalent fluence (Φeq)

Irradiation changes the performance of detectors

*Expressed in I MeV neutron equivalent fluence (n/cm²)

*Thermal neutron fluence

CMS Padiation	LHC (10 ³⁴ cm ⁻²	² s ⁻¹ , 500 fb ⁻¹)	HL-LHC (5×10 ³⁴ cm ⁻² s ⁻¹ , 3000 fb ⁻¹)		
	Barrel (max)	Endcap (max)	Barrel (max)	Endcap (max)	
Absorbed dose (rad)	3.50E+05	2.10E+07	2.10E+06	1.26E+08	
Dose rate (rad/h)	25	1512	126	7560	
Fast neutrons fluence (E>100KeV, cm ⁻²)	3.00E+13	8.00E+14	1.80E+14	4.80E+15	
Fast neutrons flux (E>100KeV, cm ⁻² s ⁻¹)	6.00E+05	1.60E+07	3.00E+06	8.00E+07	
Charged hadrons fluence (cm ⁻²)	4.00E+11	5.00E+13	2.40E+12	3.00E+14	
Charged hadrons flux (cm ⁻² s ⁻¹)	8.00E+03	1.00E+06	4.00E+04	5.00E+06	

HL-LHC: a factor 10 wrt RunIII LHC

New Trends in Calorimetry

How to cope with physics and performance requirements?

Principle of the Dual Readout method

Study and eliminate/reduce dominant source of fluctuation

Hadronic showers consist of two components

- The calorimeter response to these two components is typically very different
- Hadronic showers are characterized by very large fluctuations due
 - the energy sharing between these two components
 - the fluctuation in the amount of invisible energy

electrons positrons, photons, π^0

Principle of the Dual Readout method

Measure the electromagnetic fraction event by event to equalize the response off-line

- Scintillation light to measure all charged particles
- Cherenkov light to measure only relativistic particles, namely only e+ and e- (em component of the hadronic shower).

$$S = E \left[f_{em} + \frac{1}{(e/h)_{S}} (1 - f_{em}) \right]$$

$$Q = E \left[f_{em} + \frac{1}{(e/h)_{Q}} (1 - f_{em}) \right]$$

$$e.g. \text{ If } e/h = 1.3 \text{ (S)}, 4.7 \text{ (Q)}$$

$$\boxed{\frac{Q}{S}} = \frac{f_{em} + 0.21 (1 - f_{em})}{f_{em} + 0.77 (1 - f_{em})}$$

$$\boxed{E} = \frac{S - \chi Q}{1 - \chi}$$
with $\chi = \frac{1 - (h/e)_{S}}{1 - (h/e)_{Q}} \sim 0.3$

- * **Compensation** achieved without construction constraints
- * **Calibration** of an hadron calorimeter just with electrons
- * High resolution EM and HAD calorimetry

Dual Readout method in sampling calorimeter

In sampling calorimeter with two different types of fibers, Cherenkov and Scintillation are separated by construction

NEW DREAM

- * Each module divided in 4 towers
- * Each tower read out by 2 PMTs, one for Cherenkov and one for scintillation

The response curve for a mixture of hadrons with energies corresponding to the W and Z masses (GEANT4 simulation)

Hadronic Resolution (Pb Module)

$$\frac{\sigma}{E} = \frac{53\%}{\sqrt{E}} + 1.7\%$$

To include corrections on:

- light attenuation
- lateral leakage (~ 6%)

Dual Readout method in homogeneous calorimeter

Requirements for using crystals in dual readout based calorimeter:

Good Čerenkov vs Scintillation separation

Response uniformity

High light yield (to reduce contribution of p.e. fluctuation to the resolution)

Separation can be achieved by:

* optical filters: exploit different spectral region of Č and S
 * time integration: exploit different time structure of Č and S

G. Gaudio and P. Meridiani — IFD2015 – Dec. 16–18th, 2015

In order to have the best possible separation a crystal must have a scintillation emission:

- * in a wavelength region far from the Cherenkov one
- * with a decay time of order of hundreds of nanoseconds
- * not too bright to get a good C/S ratio (<50% BGO emission)

CALOCUBE implemented dual readout *CsI(TI) cube wrapped in black tape *2 PhotoTubes, UV filters

Particle Flow & "High granularity paradigm"

 $\sigma(E)/E \sim 120\%/sqrt(E)$

• B=3.8 T

Jet composition:

charged hadrons ~70% \rightarrow tracker $\sigma(p_T)/p_T \sim 1\%$ photons ~20% \rightarrow ECAL $\sigma(E)/E < 20\%/\sqrt{E}$ <u>neutral hadrons</u> ~10% \rightarrow HCAL $\sigma(E)/E < 60\%/\sqrt{E}$

High granularity to reduce confusion term between close-by showers

Extreme longitudinal and transverse segmentation to help shower recognition ECAL: small R_M , high λ/X_0 ratio

CMS Preliminary PF in action already at LHC, 0.45 Resolution CMS (non optimised for PF) 0.4 0.35 0.3 Jet-Energy 0.25 • track $\sigma(p_T)/p_T \sim 1\%$ 0.2 • photons $\sigma(E)/E \sim 3\%/sqrt(E)$ 0.15 • neutral hadrons 0.1

Fisica Nucleare

High granularity calorimeter design

R&D pursued within CALICE **PFA Calorimeter** collaboration, a 15 year long R&D physics R&D moving from 1st generation prototype **ECAL** HCAL prototypes demonstrating the PF tested in beam concept, to 2nd generation prototypes Tungsten addressing technical issues to Tungsten Iron demonstrate ILC/CLIC application (mechanics, power, integration...) analog digital analog digita Several designs options investigated with different granularity for ECAL & HCAL: Micro RPC Scintillator MAPS Silicon Scintillator GEM megas analog, semi-digital, digital 10x10 10x10 0.05x0.05 30x30 10x10 10x10 Pixel, mm² 45x10 \rightarrow 5x5 \rightarrow 45x5 1m³ Sc AHCAL + SiW ECAL SDHCAL, RPC, 1.3m³ Micromegas: 4 layers x 1m²

High granularity calorimeter: technologies

Si/W ECAL

- silicon easily segmentable, intrinsically linear (current pixel size 5x5 mm²)
- require high dynamic range, low noise electronics from I-1000 MIPs
- power consumption: power pulsing reduce consumption by 1/100 (only for ILC)
- R&D currently targeted on integration for a full scale detector design

AHCAL: Sc w/ SiPM

Scintillator (30x30 mm²)+ SiPM readout: 8k channels analog readout allows software compensation techniques

SDHCAL with gas: RPC, Micromegas or GEM

cheaper alternative to scintillator advantages for 2 bits readout (1, several, many MIPS) over 1 bit Micromegas and GEM have potential to improve RPC dynamic range & proportionality

High granularity prototypes allowed to study in great detail space and time shower evolution

Agreement with G4 within 5-10% (studied Fe and W absorbers)

W absorber requires inclusion of neutron processes to reach agreement with data

Istituto Nazionale di Fisica Nucleare

CMS: HGCAL for HL-LHC

	EE	FH	ВН
Absorber	W/Cu	Brass	Brass
Thickness	26 X₀ / 1.5 λ	3.5 λ	5 λ
# long samplings	28	12	12 (readout 2)
Active Material	Si	Si	Sc
Pixel size	10x10 mm ²	10x10 mm ²	
# channels	4.3M	1.8M	

CMS Phase II upgrade: High Granular CALorimeter for the forward region $(1.5 < |\eta| < 3)$

High granularity (transverse & longitudinal) for PF in very dense environment: <PU> at HL-LHC 140-200

New challenges wrt CALICE:

- * Radiation hardness: fluence up to 10¹⁶ n cm⁻² for EE (Si has to be cooled @ -30°C)
- * LI Trigger + Data transfer: ~200 Tb/s to be shipped off-detector
- * Engineering & integration: cooling (~125kW via evaporative CO₂), power distribution, mechanics...

Fast timing: Pile-up mitigation @ HL-LHC [NFN di Fisica Nucle

Calorimeter performance (Jets/MET) deteriorates @ 140-200PU

@140 PU ~70 GeV pT due to PU in a 0.5 jet cone

- Neutrals PU overlap cannot be corrected even with PF approach
- Time of flight information to associate calorimeter energy deposits to primary vertex (assuming knowledge of vertex time): O(30ps)
- Time resolution would reduce PU overlap to Runl levels (PU neutrals rejection ~5)

CMS preliminary, L = 1.6 fb⁻¹

Jet Area (MC)

Average Offset (DATA)
 Average Offset (MC)
 Jet Area (DATA)

ml < 0.5

30⊢

25⊢

20

15

10

5

√s = 8 TeV

Anti-k_T R=0.5 PFlow

CMS: developing the idea of "hermetic timing" for γ (possibly up to low p_T) and charged tracks between $0 < |\eta| < 3$

Opportunistic use of calorimeter upgrades:

- ECAL EB (0<|η|<1.5): PbWO₄+APD upgrade electronics aims at ~30ps above >30-40 GeV γ (no low energy γ PU rejection)
- HGC EE (1.5<|η|<3): electronics should allow ~50ps
 for energy hits >10 MIPs (>50 hits above threshold for γ>50 GeV, <50ps also for low pT γ).
 Possibility for a MIP fast timing layer

Also studying a dedicated timing detector in the tracker volume. 2 options:

- Fast timing layer in tracker (MIP): Low-Gain avalanche detectors, hyper fast APD, MPGD
- Pre-shower in front of EB (MIP+γ): small crystal (e.g. LYSO)+SiPM, I-MCP

stituto Nazionale li Fisica Nucleare

Fast timing: ATLAS

ATLAS: high granular fast timing detectors in the region between barrel & endcap cryostat

baseline 4 layers @ 2.5< $|\eta|$ <4.3, possibly a 3-4 X₀ pre-shower using W absorber

Table 3: Possible performance of several detector technologies to be deployed for a timing detector after a dedicated and successful R&D program is completed.

	Area	Resolu	tion/MIP	Noise	Efficiency/MIP	Max. Dose	
	[mm ²]	Time [ps]	Space [µm]	[e ⁻ rms]		[Mrad]	
Hybrid pixel	20×20	100	10	100	1	1000	
HVCMOS pixel	20×20	100	10	30-100	1	1000?	
Low-Gain Avalanche Detector		10	10-50	-	1	100?	
Poly-diamond strips	5×5	100	10	500	1	1000?	
Photocathode MCP	50×50	10	100		photon statistics	0.3?	
Fiber bundle	1000×50	50	100		photon statistics	10-100?	
Ionization MCP	200×200	30	100	100	0.7	100?	

Similar technologies & requirements to what is being considered for CMS: possibility for R&D synergies, also on specific

aspects i.e. clock distribution

Other fast timing applications: Mu2e

Istituto Nazionale

R&D: Rad-hard optical calorimeters

Shashlik design to minimise the optical path in the scintillator. Also rad-hard WLS fibres & photodetectors

stituto Nazionale li Fisica Nucleare

Ceramics: a rad-hard material for calorimeters

i Fisica Nucleare

Summary & conclusions

- High energy & high intensity frontiers driving R&D directions for calorimetry:
- >10 years old ideas are reaching maturity and start to be integrated into full scale detectors: dual readout & high granularity
- Particle flow approach beneficial for jet resolution but also to cope with high pile-up
- Extremely fast detectors: a new concept of integrated "5D calorimetry" (space, energy, time) is surfacing. Beneficial for the new challenging rates (10¹⁰ events/ sec), benefit from R&D for rad hard & fast O(10ps) sensors
- Radiation hard optical calorimeters. Still some work to be done, need radiation hard O(10¹⁶ n/cm⁻²) photodectors. New interesting scintillators (ceramics) appearing on the market

Back-up

e+ e- colliders

LFV

Particle ID in sampling dual readout calorimeter

Methods to distinguish e/π in longitudinally unsegmented calorimeter

Combination of cuts: >99% *electron efficiency*, <0.2% *pion mis-ID*

Dual Readout method in sampling calorimeter Istituto Nazionale di Fisica Nucleare

Dual Readout method in homogeneous calorimeterine Nazio

Motivations:

- high density scintillating crystal widely used in particle physics experiment: ensure excellent energy resolution for electromagnetic showers
- calorimeters with a crystal EM compartment usually have a poor had. resolution due to
 - fluctuation of the starting point of the hadronic shower in the EM section
 - different response to the em and non-em component of the shower in the two calorimeters

Dual readout applied to an hybrid system:

Measuring fem on an event-by-event basis allows to correct for such fluctuations and allows to eliminate the main reasons for poor hadronic resolution

Properties	Čerenkov	Scintillation		
Angular distribution	Light emitted at a characteristic angle by the shower particles that generate it $\cos\theta = 1/(n\beta)$	Light emission is isotropic: excited molecules have no memory of the direction of the particle that excited them		
Time structure	Instantaneous, short signal duration	Light emission is characterized by one or several time constants. Long tails are not unusual (slow component)		
Optical spectra $\frac{dN_C}{d\lambda} = \frac{k}{\lambda^2}$		Strongly dependent on the crystal type, usually concentrated in a (narrow) wavelength range		
Polarization polarized not polarized				

Results from DREAM Crystal TB

Praseodymium doped PbW04

Praseodymium doping causes:

- \bigstar shift of the S spectra to higher λ (emission in the red region)
- \bigstar too long S decay time (~µs)
- \bigstar shift of the absorption cut-off to higher λ

The high wavelength shift allow for higher cut-off filters, resulting in <u>no light attenuation</u> effect. The <u>too long tail</u> in scintillation emission is not suitable for fast calorimetry.

BGO Matrix results

Resolution obtained from distribution of integrated charge

- * Čerenkov energy resolution shows a constant term of about 1.5%
- * good linearity (within ± 3%)
- * Čerenkov light yield about 6 p.e./GeV

BGO vs BSO for dual readout use

Istituto Nazionale di Fisica Nucleare

Use of dual readout method

78 cm=20 crystals

78 cm=20 crystals

LuAG and Ce:LuAG

Figure 5. Bundles of Ce doped (top left) and undoped (top right) LuAG fibers and corresponding typical signal pulses recorded (bottom row). Each fiber measures 2 mm in diameter and 80 mm in length.

CaloCube

*500 MeV electrons

- 78 cm=20 crystals *CsI(TI) cube wrapped in black tape
- *2 PhotoTubes, UV filters
- *Signal time profile averaged over many events

FoM is calculated as the LY in 1^{st} ns obtained by using light output and decay time data measured for 1.5 X₀ crystal samples.

Crystal Scintillators	Relative LY (%)	A ₁ (%)	τ ₁ (ns)	A ₂ (%)	τ ₂ (ns)	Total LO (p.e./MeV, XP2254B)	LO in 1ns (p.e./MeV, XP2254B)	LO in 0.1ns (p.e./MeV, XP2254B)	LY in 0.1ns (photons/MeV)
BaF ₂	40.1	91	650	9	0.9	1149	71.0	11.0	136.6
LSO:Ca,Ce	94	100	30			2400	78.7	8.0	110.9
LSO/LYSO:Ce	85	100	40			2180	53.8	5.4	75.3
CeF ₃	7.3	100	30			208	6.8	0.7	8.6
BGO	21	100	300			350	1.2	0.1	2.5
PWO	0.377	80	30	20	10	9.2	0.42	0.04	0.4
LaBr ₃ :Ce	130	100	20			3810	185.8	19.0	229.9
LaCl₃:Ce	55	24	570	<mark>7</mark> 6	24	1570	49.36	5.03	62.5
Nal:Tl	100	100	245			2604	10.6	1.1	14.5
Csl	4.7	77	30	23	6	131	7.9	0.8	10.6
CsI:TI	165	100	1220			2093	1.7	0.2	4.8
CsI:Na	88	100	690			2274	3.3	0.3	4.5