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Motivation
 ν masses from ν oscillation are a 

clear signature of physics beyond SM 
access to very high 
new physics scale (M

NP
)

 Oscillation parametrized with neutrino mixing 
PMNS matrix + 2 mass differences

→ precise determination of parameters allow to constraint 
models explaining oscillation. Open questions:

● mass hierarchy (MH) ? 
● θ

23
 maximal (> or <45deg) ? 

● δ
CP

 ?

 Not zero δ
CP

 would be first observation in CP violation in lepton sector!

→ important piece of the puzzle of matter/antimatter asymmetry

3 angles (θ
12

, 

θ
23

, θ
13

) and

1 phase δ
CP

m ν≃
g
M NP
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Oscillation experiments

ACCELERATOR
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 ν
e

uncontrolled 
sources:
atmospheric, 
solar, SuperNovae

baseline 300-3000 km

baseline ~km

controlled 
sources

characterize the 
unoscillated flux

underground, very large mass 

νµ νe
/ νµ νe

● HyperKamiokande 
(T2HK): water 
cherenkov

● DUNE: Liquid 
Argon TPC

● JUNO: doped liquid 
scintillator 
(50 km baseline → MH)

(also proton decay searches and
some sensitivity to DM search)

Measurements:

● νµ → νµ disappearance →  θ
23

, ∆m
23

δ
CP

PRESENT FUTURE
● SuperKamiokande 

(T2K): water 
cherenkov

● NOVA: plastic 
scintillator

● Daya Bay, Double 
Chooz, RENO 
Gadolinium doped 
liquid scintillator

oscillations

 ν
e

● ν
e
→ ν

e
 disapp.→ θ

12
, ∆m

12
 (Kamland: 180 km)

● νµ → ν
e
 appearance →  θ

13

● ν
e
→ ν

e
 disappearance→ θ

13

● νµ → νµ VS νµ → νµ disappearance 

νµ → ν
e
 VS νµ → ν

e
 appearance 

δ
CP,

 
MH



  

Water cherenkov ν detectors
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How does it work?

Working to improve PMTs and on Gd doping.
Electronics and calibration system very similar to SuperK

µ

 Signal: (anti)νµ → (anti)ν
e
 oscillationSUPERKAMIOKANDE

clear ring fuzzy ring

● Outer volume with outward facing PMT to veto external background

ν interactions 
from beam:

● Lepton momentum and angle → neutrino energy
● Select events with no outgoing pions (1 ring) 

(Quasi-Elastic interactions) νn → l-p (outgoing nucleon undetected)

● pions: π+/- undetected and π0 → γγ → e-like ring + γ undetected

No magnetic field → no charge measurement (ν/ν)
R&D: Gd doping to tag neutrons to distinguish: νn → l-p from νp-> l+n   

HYPERKAMIOKANDE:

● intrinsic ν
e
 component in the beam 

● ν oscillations: intrinsic ν component in the beam

● PMT timing to select beam bunches and reconstruct vertex position in fiducial volume

 Backgrounds:



  

From SuperK to HyperK
Total volume

Fiducial volume

PMTs 

Tanks

outer detector

inner detector

Photocoverage

Sensor efficiency
(Collection x Quantum eff.)

          1 cylindrical 
41.4m (h) x 39.3m (d)

50 kTon 990 kTon

560 kTon22.5 kTon

2 egg-shape tanks 
48m (w) x 50m (h) 
x 250m (l)

● minimize risk due to pressure on PMTs 
(avoid cascade implosion as in SK 
2001 incident)

● minimize cost (volume vs #PMTs)

● need PMT R&D (next slide)

11.129 50.000

1885 25.000

40% 20%

18% (22x80%) 29% (30x95%)

Tanks and PMT design under discussion:



  

R&D on PMTs

 Response to single photoelectron:
charge resolution time resolution

● Optimization should 
include pressure 
resistance
possible to put protective cover 
→ need precise control of glass 
quality

Integrated system of inner and 
outer PMTs under study (solve 
problems of pressure and 
in-water electronics)

3' PMTs for 
inner detector

large PMT for
outer detector 
veto



  

Gadolinium doping

● EGADS: 200 ton scale model of SuperK fully operative in Kamioka mine

● R&D studies (eg, WATCHMAN) as reactor monitoring

● SuperKamiokande will run with loaded Gd in next years! 

Neutron capture time tested with Am/Be 
source: data-MC perfect agreement

All the trick is about keeping water pure and 
transparent without loosing Gd (dedicated 
filtration system)

● νp → l+n → n get captured in Gd with emission of few γ ~8MeV
→ for beam neutrino physics: ν vs ν separation, 
but also useful to enhance sensitivity to SuperNova ν and proton decay

Gd concentration

1y time
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Liquid Argon technology
Ionizing particle in LAr → 2 measurements:
 charge from ionization 

→ tracking and calorimetry
 scintillation light → trigger and t

0

● Very good electron/γ ID and 
π0 reconstruction

DUNE: staged approach with 4 modules 
of ~10kTon fiducial mass each

● µ track momentum from range 
(or from multiple scattering if not contained)

● PID from dE/dx
(ICARUS)

4 x (60m x 12m x 12m)

   (drift time → third coordinate for non-beam events)

● Calorimetric energy from total 
collected charge (+ light)



  

Result of years of R&D
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Single-phase VS Double-phase 

PMTs

ionizing 
particle

e-

anode

LEMγ
secondary 
scintillation

LIQUID
GAS

γprimary 
scintillation

transparent cathod

→ high 
signal/noise 
thanks to 
avalanche 
multiplication 
in gas

 Very long charge drift path → 
diffusion and attenuation

Double Phase charge readout

γ

ionizing 
particle

γ
 scintillation

e-

anode wires

SiPM

cathode

LIQUID Single Phase 
charge 
readout
→ limited to short 
drift distances: 
4 drift regions of 
3.6m each

anode cathode anode cathode anode

3.6 x 4 m
 

drift direction for single phase

12 m 
drift direction for 

double phase

anode

cathode
anode wires
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Charge signal

 Very long drift path → diffusion and attachment

● W
e
 = 23.6 eV → mip produces ~ 100k e- per cm  

● dirft velocity ~mm/µs (→ total drift time ~10 ms) 

● diffusion ~few mm with 1-0.5 kV/cm
(→ pitch readout few mm)

● O
2
 pollution captures ionization electrons 

→ charge attenuation

(→ impurity ~20 ppt O
2
 needed)

DUNE double phase 

DUNE

→ 60k e- after 
recombination

si
ng

le
 p

ha
se

do
ub

le
 p

ha
se

ICARUS
2% of DUNE 1 module mass

new pump

single phase 
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Charge readout plane (CRP)
 Single Phase

● no gain

● uniform CRP design

● 3 views

 Double Phase
● stable gain of 20 on 

10x10cm LEM

● to scale up: CRP segmented 
in 50x50cm modules

● 2 views (x,y) of equal 
quality



  

Many other challenges

● high voltage on large surfaces: 

● large number of channels

→ electronics in gas accessible only in double phase design

→ calibration and uniformity

● software for automatic reconstruction

(eg: flattening of cathode and of charge readout plane, 
E field between different modules of charge readout ...)

● LAr TPC as calorimeter ICARUS:
➢ Low energy electrons:
    σ(E)/E = 11%/√E(MeV)+2%
➢ Electromagnetic showers:
    σ(E)/E = 3%/√E(GeV)
➢ Hadron shower (pure LAr):
    σ(E)/E ≈ 30%/√E(GeV)

● scintillation light: 

double phase: standard PMTs (with coating), 

single phase: first test of wavelenght shifting bars to SiPM 
integrated with a TPC 

cathode-anode ∆V ~few hundreds V (double phase)
 ~180 V (single phase)

huge amount of info (efficient zero suppression)

fully omogeneus with very low threshold

very good resolution and detailed tracking 
inside shower → potential to improve 
shower models!
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Water Cherenkov vs Liquid Argon
 Hyperkamiokande much more sensitive to CP violation while DUNE much more 

sensitive to Mass Herarchy (see backup). 
But sensitivities depend on assumed beam power, detector mass and on baseline.

● well known and solid technology
● successfull R&D → first very 

large scale realization

● very large mass (~MTon) ● size limited by drift length (~40KTon)

● info only about particles above 
Cherenkov threshold

→ model dependent assumptions 
to reconstruct Eν

→ no need of precise Eν shape: 

mainly a counting experiment

● full reconstruction of tracks and 
showers down to very low threshold,

    very good particle ID

→ precise Eν shape accessible and 

needed for good sensitivity

→ need to reach very good control on 
detector calibration/uniformity and on 
neutrino interaction modelling

 Comparison of technologies:

WATER CHERENKOV
LIQUID ARGON
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JUNO concept
MH corresponds to a change of phase
in the oscillation

 New attempt: use ν
e
 disappearance from 

reactors to measure mass hierarchy (MH)

precise determination of θ13

 ν
e
detected through inverse beta decay: 

    ν
e
p → e+n

● prompt γ from e+ ionization 
and annihilation 

   E
VIS

=Eν -(Mn
-M

p
)+m

e
 (1-8MeV)

● delayed γ's from n capture 
(∆t~200µs, E=2.2MeV)

IBD events before selection: ~80/day (eff~83%)

MH determination 
needs 3% energy 
resolution
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JUNO requirements

< 3%  
@1MeV

1) Large light yield: 
10000 pe/MeV created

● attenutation length >20m
● photocoverage 80%
● detection efficiency 35%

→ detected 1200 pe/MeV

2) Non-uniformity and linearity 
(geometry, electronics, noise...) 
need to be 6 times better than 
Double Chooz 

1) stochastic term 2) non-stochastic term
(systematics)
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Stochastic term
 Increase light yield

liquid scintillator with increased doping 
and better purity (→ attenuation length 
25 m atteined in lab.)

 15k PMTs with detection efficiency 
(quantum eff x collection eff) ~35%

transmission 
photocatode

reflective 
photocatode

to collect electrons from all 
directions: Microchannel 
plates (instead of dynode chain)

R&D on PMTs with 4π acceptance

collection 
efficiency

quantum eff:
30% + 40% x 30% (still in R&D phase)
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Non-uniformity and non-linearity

● very difficult to map all the huge volume (especially near edges)

● much smaller light yield: 10% coverage 
→ 50pe/MeV → <4 pe/PMT → energy 
via photon counting

● larger stochastic term but same response also 
for high energy events and events near border

● during source calibration campaign cross-check uniformity and linearity 
with small PMTs (possibility of x-checking ev. by ev. under study)

 Beyond electronics and noise, there is an intrinsic non uniformity in a huge volume 
with very large light yield:

● the light yield per PMT change by a factor of 100 between events in the 
center and near the edges

● events near the edge may give up to 100 pe/PMT → 
energy estimation via charge integral become very 
complicated with 100 signal superimposed

 Detailed system of radioactive sources deployment for calibration
● sources only up to 5 GeV

 Adding 3' small PMTs in the space between large PMTs
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PINGU/ORCA
Huge volume in South Pole ice (PINGU) or in 
Mediterranean sea (ORCA) instrumented  with PMTs



  

Summary

water based liquid scintillators (beyond Gd)

SNO+

 Target: measurement of neutrino oscillation parameters → focus on MH and δ
CP

 Working on 3 technologies:

● water cherenkov : HK ~25 times SK 
→ increase PMT light collection to minimize number of PMTs

→ possibly Gd doping 

● LAr (DUNE): scale up to large volumes and large charge readout surface

● liquid scinitillator (JUNO): unprecedented energy resolution to measure MH at reactors

 Other experiments and R&D:

(water Cherencov in sea or ice)

double beta experiments ...

(mainly limited by cost of civil engeneering given the huge size)
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BACKUP

Future large neutrino detectors



  



  



  



  



  

HYPERKAMIOKANDE



  

HYPERKAMIOKANDE



  

Timeline
HYPERKAMIOKANDE



  

Scintillation in LAr 

 Peak of emitted light in Ar at 128 nm → need coating to shift into PMT wavelength

 Wγ = 19.5 eV → few 107 γ per GeV 

one 8'' PMT per sq. meter inside LAr 
few 1000 PE/PMT dynamic range

S.Bolognesi – NNN2015 16

 Scintillation signal shape :
● fast component (singlet): τ

1
 ~10 ns (~23% for mip)

● slow component (triplet): τ
2
 ~1 μs (~77% for mip)

 Background from 7kHz cosmics
● primary scintillation → deadtime < 100µs
● continuous background of secondary scintillation 

(from avalanche in gas)

(S+B)/B ~ 50 (20 ns) → 1 (1 µs) use signal shape to isolate signal over background

(QE~10 % → collection efficiency few 10-4)



  

Sensitivities

HK 3 years (1MTon): CPV 
measured at 3s(5s) for 
75% (60%) of dCP values

Assuming 1MW beam

DUNE 10 years (40 kTon): 
CPV measured at 3s (5s) 
for >50% (~25%) of dCP 
values

HK 10 years: 
wrong MH excluded 
at 3s

DUNE 10 
years: 
definitive 
determination 
of MH 



  

JUNO

corresponds to a change of phase
in the oscillation



  

JUNO backgrounds
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