Nanostructured materials for particle detector G. Chiodini - INFN Lecce

Overview

- 1. Quantum dots (QD)
- 2. Nanowire (NW) and Carbon nanotubes (CNT)
- 3. Graphene
- 4. Conclusions

Quantum Dot

QD are nanoparticles composed of periodic groups of III-V or II-VI semiconductor materials having a size-tunable absorption-emission spectra and high quantum efficieny

Large batch of QD are commercially available in kg scale via the least toxic method: colloidal synthesis

G. Chiodini - IFD2015 - Torino

QD as liquid scintillator

Colloidal QD are diluted in a solvent: toluene (Scintillator) or water (Cherenkov)

v oscillations
Double-β

decay

1g/L inverted hierarchy 10g/L normal hierarchy

1kton		
PMTs New Photo-detectors		
Liquid Scintillator	Quantum-Dot-Doped Scintillator	
1.5m		

lsotope	Endpoint	Abundance
⁴⁸ Ca	4.271 MeV	0.0035%
¹⁵⁰ Nd	3.367 MeV	5.6%
⁹⁶ Zr	3.350 MeV	2.8%
¹⁰⁰ Mo	3.034 MeV	9.6%
⁸² Se	2.995 MeV	9.2%
116Cd	2.802 MeV	7.5%
¹³⁰ Te	2.533 MeV	34.5%
¹³⁶ Xe	2.479 MeV	8.9%
⁷⁶ Ge	2.039 MeV	7.8%
¹²⁸ Te	0.868 MeV	31.7%

G. Chiodini - IFD2015 - Torino

QD vs PPO

β source spectra

- Tune the peak to the newest Photo-Detector
- Increasing concentration:
 - Attenuation length
 - FRET (Förster Resonant Energy Transfer) non-radiative decay

G. Chiodini - IFD2015 - Torino

5 /22

QD as plastic scintillator or wavelenght shifter

QD are successfully embedded in solid matrix (PMMA, GLASS, SU8, MEH-PPV):

- E/eh like inorganic semiconductor (high E resolution)
- fabrication as plastic scintillator (low cost, large area, easy processing)

Theoretical expected 10 more QY but only factor 2 experimentally

QDOT-WLS in CNS5: INFN-PG and CNR-PG

G. Chiodini - IFD2015 - Torino

6 /22

QD still to go

Blinking: Intermittency and on/off emission observed in colloidal quantum dots, nanorods, nanowires and some organic dyes.

Quenching: Off emission for near by gold nano particle

Non-radiative FRET (Fluorescence Resonance Energy Transfer)

G. Chiodini - IFD2015 - Torino

Interconnects and STV with CNT

Through Silicon Via with CNT

Easy, not expensive, fast (5 minutes CNT grow)

G. Chiodini - IFD2015 - Torino

CNT and MNW grow in alumina template NANOCHANT1/2+CANTES+SERENA+ESOPO in CNS5

Group: L.Malferrari, A. Montanari e F.Odorici (INFN-Bo), R. Angelucci, R. Rizzoli e G.P. Veronese (CNR-IMM-Bo), M. Cuffiani e A. Jagminas (Unibo)

Porous anodic alumina (Al2O3) template

CNT by electrodeposition Metallic NW (Co) by electro-deposition

Efficienct CNT cold cathode based on field emission

Porous alumina JVtrasmission enhancement @ 325 nm filled with SNW

G. Chiodini - IFD2015 - Torino

9 /22

SNW as plasmon waveguide

Plasmons are "quasi-particles" associated to collective surface oscillation of a free e- gas in the metal strongly interacting with a photon

Plasmonic excitation in nanostructure have a size frequency dependency in the range of IR-VI-UV

Free-space photons -> SS excitation in SNW -> SS propagation in SNW -> free-space photon emission at the end or discontinuities in SNW

G. Chiodini - IFD2015 - Torino

10/22

SDD+NW

Enhance SDD QE in UV by replacing AntiReflex Coating with SNW

Group: L.Malferrari, A. Montanari e F.Odorici (INFN-Bo), R. Angelucci, R. Rizzoli e G.P. Veronese (CNR-IMM-Bo), M. Cuffiani e A. Jagminas (Unibo)

REDSOX2 in CNS5 INFN/INAF/FBK (A. Vacchi) SDD development

G. Chiodini - IFD2015 - Torino

11/22

Multi-Wall-CNT

MW-CNT easier to fabricate but have different sizes

CVD deposition INFN-NA+CNR-AQ

QE~40% at ~ 850 nm

Spray deposition INFN-BA+CNR-BA

QE~35% at ~ 180 nm

GINT+SINPHONIA+PARIDE in CNS5

G. Chiodini - IFD2015 - Torino

12/22

Directional Dark Matter Searches with Carbon Nanotubes

LM Capparelli^{*}, G Cavoto[¶], D Mazzilli^{*} and AD Polosa^{*,¶}

*Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy ¶INFN Sezione di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy

G. Chiodini - IFD2015 - Torino

13/22

Graphene show time

2D Graphene

Monoatomic layer

Graphite have metallic or semiconductor behaviour according to the propagation axis.

G. Chiodini - IFD2015 - Torino

Graphene Dirac point

Graphene conduction band and valence bend touch in 6 points Egap = 0.

No ON/OFF transistors but analog FET Yes

G. Chiodini - IFD2015 - Torino

Graphene IRST Roadmap

G. Chiodini - IFD2015 - Torino

16/22

G-FET and CNT-FET Radiation-hardness

NO CHARGE DRIFT DETECTOR

Graphene field effect transistor as a radiation and photodetector

Author(s): Ozhan Koybasi; Isaac Childres; Igor Jovanovic; Yong P. Chen

Proc. SPIE 8373, Micro- and Nanotechnology Sensors, Systems, and Applications IV, 83730H (3 May 2012);

GARFIELD in CSN5 (Grant Giovani)

G. Chiodini - IFD2015 - Torino

18/22

Graphene THz radiation bolometer

Ce=e- thermal capacitance (small 2E-22J/K just a atomic layer) Ge=e- thermal conductance(small electron-phonon coupling) Ideal condition extrapolating from T = 1 K (no measurements at 0.1 K)

G. Chiodini - IFD2015 - Torino

e-T readout in graphene $dE=sqrt(dE_{fluct}^2+dE_{readout}^2)$

Due to small electron-phonon coupling almost no change in ${\rm R}_{\rm DS}$. Several readout schemes for e-T in graphene tried in lecterature:

- Johnson Thermal Noise: single photon capability but worse dE
- Double graphene layer: introduce a Te vs R_{DS} dependence (a)
- Superconductive contacts: Te vs SC tunnel junction resistance (b)

Benchmark for THz radiation detectors:

- TES (Transistor Edge Superconductor)
- KID (Kinetic Inductance detector)

G. Chiodini - IFD2015 - Torino

20/22

Conclusions

- Nanostructured material are "new" to us but a lot happen out there since a long time (equivalent to useless?)
- A lot of nice idea turnout to be technologically too difficult (or too naive?)
- Few interactions between INFN groups and CNR groups some of them quite consolidate (saving private ryan)

Comment for discussion

- We are very busy with experiment maintenance, running, data analysis and future upgrade: let other make the technological development and when ready we can improve it and use it.
- It is strategic to survive, to get external found, to attract young people, to have new challenge, to maintain the leader-ship in technology.
 - Do every think is not possible and should not be done (synergy is an opportunity not a problem)
 - In synergy with others let's do what we are the best (ideas, device simulation, advanced front-end, interconnects, daq, data analysis, experiment in physics)