The 4D challenge

Is it possible to build a tracker with concurrent excellent time and position resolution?

Can we provide from the same detector and readout chain:

Timing resolution ~ 10 ps Space resolution ~ 10's of μm

A time-tagging detector

(a simplified view)

Time is set when the signal crosses the comparator threshold

The timing capabilities are determined by the characteristics of the signal at the output of the pre-Amplifier and by the TDC binning.

What is the best "time measuring" circuit?

Constant Fraction Discriminator

The time is set when a fixed fraction of the amplitude is reached

Time over Threshold

The amount of time over the threshold is used to correct for time walk

Multiple sampling

Most accurate method, needs a lot of computing power. Possibly too complicated for large systems

Time resolution

$$\sigma_{t} = \left(\frac{N}{dV/dt}\right)^{2} + \left(\text{Landau Shape}\right)^{2} + ?$$
Amplifier non ideal

Usual "Jitter" term Here enters everything that is "Noise" and the steepness of the signal

Time walk: time correction circuitry Shape variations: very difficult to simulate

behavior

Roadmaps

More of the same: hybrid semiconductor systems

Various idea on segmentation

The real solution: monolithic

> 10 years

This is the correct approach, it goes with Guido's pile-up of 1000

Not all geometries are possible

Signal shape is determined by Ramo's Theorem:

The key to good timing is the uniformity of signals:

Drift velocity and Weighting field need to be as uniform as possible

Basic rule: parallel plate geometry: strip implant ~ strip pitch >> thickness

Everything else does not work

Possible approaches for hybrid systems

We need to minimize this expression:

$$\sigma_{\rm t}^2 = \left(\frac{\rm N}{\rm dV/dt}\right)^2$$

- APD (silicon with gain ~ 100): maximize dV/dt
 - Very large signal
- **Diamond:** minimize N, minimize dt
 - Large energy gap, very low noise, low capacitance
 - Very good mobility, short collection time t_r
- **LGAD** (silicon with gain ~ 10): minimize N, moderate dV/dt
 - Low gain to avoid shot noise and excess noise factor

The APD approach

The key to this approach is the large signal: if your signal is large enough,

- Excellent time resolution
- Radiation resistance up to $< 10^{14}$ neq/cm²

The Diamond approach

Diamond detectors have small signal: two ways of fighting this problem

Ultra-Fast Silicon Detector

Adding a highly doped, thin layer of of p-implant near the p-n junction creates a high electric field that accelerates the electrons enough to start multiplication.

Large dV/dt, the same noise of traditional sensors

UFSD basic ideas: low gain and thin sensors

Why thin sensors?

Higher signal steepness, more radiation resistance, easier to achieve parallel plate geometry

Why low gain?

Milder electric fields, possible electrodes segmentation, lower shot noise, no dark count

Track-Timing in real experiments

Silicon pixels: NA62 Diamond: TOTEM

A partisan view of the future: Ultra-Fast Silicon Detectors

- Weightfield: a simulation package for Silicon detectors
- Analysis of the parameters influencing time resolution
- Testbeam results

Simulation

We developed a full sensor simulation to optimize the sensor design

WeightField2, F. Cenna, N. Cartiglia 9th Trento workshop, Genova 2014 Available at http://personalpages.to.infn.it/~cartigli/weightfield2

It includes:

- Custom Geometry
- Calculation of drift field and weighting field
- Currents signal via Ramo's Theorem
- Gain
- Diffusion
- Temperature effect
- Non-uniform deposition
- Electronics

For each event, it produces a file with the current output that can be used as input in the simulation of the electronic response.

UFSD Signal characteristics

The signal from UFSDs is different from that of traditional sensors:

 \rightarrow to fully exploit UFSDs, dedicated electronics needs to be designed.

	Electrons	Gain El.	Holes	Gain Holes	Total	Oscilloscope
Simulated Weightfield2						

Traditional sensors

Charges generated uniquely by the incident particle

Ultra-Fast Silicon Detectors

Current due to gain holes creates a longer and higher signal 14

There are 3 quantities determining the output rise time after the amplifier:

- 1. The current rise time (t_{Cur})
- 2. The RC circuit formed by the detector capacitance and the amplifier input impedance ($t_{\rm RC}$)
- 3. The amplifier BW (t_{BW})

Noise in LGAD & APD – Aide Memoire

The Shot noise voltage term

50-300 micron Sensors: Landau noise

To minimize Landau noise:

→ Set the comparator threshold as low as you can

→ Use thin sensors

The slope term: dV/dt

The rise time of the output signal is due to the sum of the current rise time, the RC system and the amplifier BW:

$$\tau_{\rm rise} = \sqrt{\tau_{\rm Cur}^2 + \tau_{\rm RC}^2 + \tau_{\rm BW}^2}$$

For a BB amplifier, the general output is:

$$V(t) = V_0 * Gain * (1. - e^{-t/\tau_{rise}})$$

And the derivative is:

$$\frac{\mathrm{dV}}{\mathrm{dt}} = \mathrm{V}_{0} * \mathrm{Gain} * \frac{1}{\tau_{\mathrm{rise}}} \mathrm{e}^{-\mathrm{t}/\tau_{\mathrm{rise}}}$$

21

Irradiation - I

Irradiation causes 3 main effects:

- 1. Decrease of charge collection efficiency due to trapping
- 2. Changes in doping concentration
- 3. Increased leakage current

1) Decrease of charge collection efficiency due to trapping

Irradiation - II

2) Changes in doping concentration

Irradiation normally creates p-doping, n-silicon becomes p-silicon.

 \rightarrow This additional p-doping is due to defects creation.

However: there is evidence that irradiation causes "initial acceptor removal" at fluences above a few $10^{14} n_{eq}/cm^2$

→ the "real" p-doping of the LGAD gain layer is deactivated.
Two paths:

- Short term: use Vbias to compensate for the loss on gain
- Long term: Gallium doping

3) Increased leakage current

Assuming Gain ~ 15, T = -15C, Shot noise starts to be important above a fluence ~ $10^{15} n^{eq}/cm^2$

The project started as an INFN Gruppo V initiative.

Sensors are being fabricated at FBK (as an alternative to CNM, Barcelona)

Electronics: very good expertise in Italy, Torino (CMOS), Tor Vergata (SIGE)

Large area sensors: not yet ready, maybe via LFoundry.

Competition: Hamamatsu will deliver prototype Low gain device by the summer

Contributions from Horizon 2020

Testbeam results and extrapolation

2014 Frascati: 2 LGAD 7x7mm² 300 μ m (C = 12pF, Gain =10) 2014 CERN: 2 LGAD 7x7mm² 300 μ m (C = 12pF, Gain =10) 2015 CERN: 2 LGAD 3x3mm² 300 μ m (C = 4pF, Gain =10 - 20)

WF2 = Weightfield2, simulation program.

Contribution of the Jitter and Landau parts to the total time resolution as a function of the sensor thickness.

What Else?

Sensors are only the first step..

Electronics: timing requires a lot of excellent design [A. Rivetti]

Cooling: precision timing requires a lot of current

→ large timing systems need an extremely advance cooling removal

High Precision Clocks: need a very good timing reference system, otherwise you don't know your precision....

Reconstruction: new algorithms, L1 and offline [G. Punzi]

CT-PPS: a UFSD - Diamond demonstrator

There is a class of events that have two protons in the final state We need to know **the position** and **the time** of the two protons

Fat strips UFSD

Electronics: custom ASIC designed in Torino

Diamond: multilayer sensors are under development.

Goal: ~ 30 ps per plane \rightarrow 15 ps for the whole system.

CMS Timing working group

Physics case → If "yes": Is it possible to build it?
→ if "yes": is CMS-Italia interested?

ATLAS High-Granularity Timing Detector HGTD

Suppression of pile-up (Run 2)

Hartmut Sadrozinski, UCSC

4 active layers per side (~10 m² in total) in front of FCAL HGTD baseline dimensions: $Z = [3475, 3545] \text{ mm}; \Delta Z=70 \text{ mm}$ Rmin ~ -90 mm ($\eta \text{ max} \approx 4.3$) Rmax ~ 600 mm ($\eta \text{ min} \approx 2.4$) Possible to extend $\eta = 5.0$ (Rmin ~ 50mm) Required timing resolution: 50 – 100 ps

There are several technologies being considered.

Physics case → If "yes", Is it possible? → if "yes" is ATLAS-Italia interested?

What resolution can we expect?

$$\sigma_{t} = (\frac{N}{dV/dt})^{2} + (Landau Shape)^{2} + ?$$

Electronic Noise: ~ 500 ENC

Silicon:

Shot Noise (5*10¹⁴ n_{eq}/cm²): ~ 1-200 ENC dV/dt (Sensor+Electronics): : ~ 15 mV/ns

Diamond:

Shot Noise (5*10¹⁴ n_{eq}/cm²): ~ 0 ENC dV/dt(Sensor+Electronics): : ~ 15 mV/ns

UFSD (50-micron thick, Gain =15): Shot Noise (5*10¹⁴ n_{eq}/cm²): ~ 500 ENC dV/dt (Sensor+Electronics): ~ 50 mV/ns

```
Multilayer Diamond
Shot Noise (5*10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>): ~ 0 ENC
dV/dt (Sensor+Electronics): ~ 50 mV/ns
```

Time walk: ~ 5-10 ps Shape variations: ~ 15 - 20 ps

UFSD: The next few years

2016:

- **Thin sensor prototypes**. By the end of 2016 I expect a much better understanding of the gain mechanism, and how thin sensors work.
- Irradiation program. Damage, trapping, gain changes in thin sensors, use of Gallium instead of Boron?
- Sensor demonstrator for ATLAS, CMS
- Discrete component read-out, on the PPS geometry
- First custom chip, 4-8 channel, analog-comparator
- Installation of system demonstrator in PPS
- Lot's of testbeam

2017:

- Additional sensor production, exploring large production capability
- R&D on full custom read-out chip