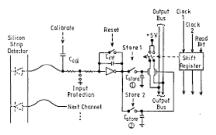
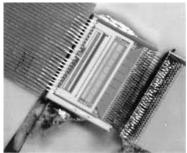
New needs and directions in microelectronics and ultra-fast electronics

A. Rivetti

INFN -Sezione di Torino

December 17, 2015

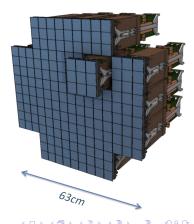

2 The industry: where it is, where it is going

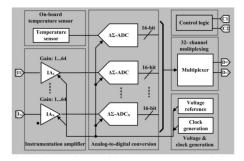

3 Detector electronics: where it is, where it is going

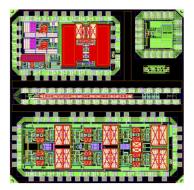
4 Conclusions

Microelectronics for detectors: 30 years of history

- Systematic design of IC for radiation sensors started in 1984
- Strong boost from LEP and LHC
- ASICs are today an enabling technology in many domains:
 - ★ Colliders
 - Astrophysics (both ground-based and space-born)
 - ⋆ XFEL facilities
 - * Medical instrumentations
 - ★ others...




Not only HEP: LSST


The Large Synoptic Survey Telescope

- 8-m class telescope
- Fast optical transient
- 800 images per night
- 1000 times the same sky region
- Dark matter mapping
- Dark energy
- Neo's
- Fast 3.2 Gpixel camera
- 4 k×4 k CDD operating at -100° C
- Two ASICs, one for CCD control and one for CDD readout

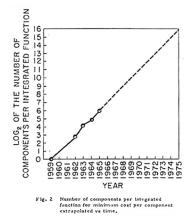
J. Verbeeck et al. Qualification method for a 1 MGy-tolerant front-end chip designed in 65 nm CMOS for the read-out of remotely operated sensors and actuators during maintenance in ITER

(日) (同) (三) (三)

Introduction

2 The industry: where it is, where it is going

3 Detector electronics: where it is, where it is going

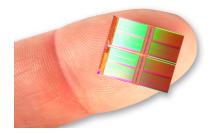

4 Conclusions

< 67 ▶

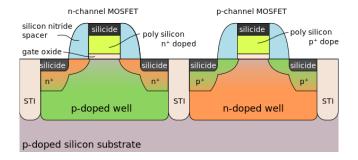
G. Moore Cramming more components onto integrated circuits *Electronics Magazine*, vol. 8, n. 38, April 19, 1965

Statements for the 1965 paper:

- The future of integrated electronics is the future of electronics itself
- Integrated circuits will lead to such wonders as home computers, automatic controls for automobiles, and personal portable communication equipments
- The electronics wristwatch needs only a display to be feasible today
- But the biggest potential lies in the production of large systems

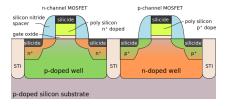


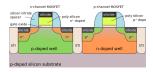
Moore's law at play


5 MB, 1956

16 GB, 2011

The electronics revolution workshorse

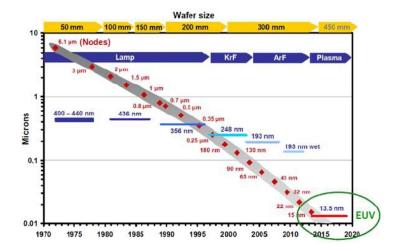

- Two complementary devices with almost equivalent performance
- Logic gates with minimal static power
- Good analog circuits


< (T) > <

E 5 4

Dennard's scaling

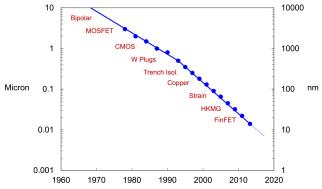
R. H. Dennard et al. Design of Ion-Implanted MOSFET's with Very Small Physical Dimensions *IEEE Journal of Solid-State Circuits*, vol. SC-9, no. 5, Oct. 1974



Device or Circuit Parameter	Scaling Factor
Device dimension tox, L, W	1 <i>/k</i>
Doping concentration Na	k
Voltage V	1 <i>/k</i>
Current /	1 <i>/k</i>
Capacitance eA/t	1 <i>/k</i>
Delay time per circuit VC/I	1 <i>/k</i>
Power dissipation per circuit VI	1/k ²
Power density VI/A	1

(日) (同) (三) (三)

э


Fifty years of scaling

3

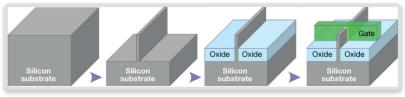
Image: A matrix

(EP1) Moore's Law Challenges Below 10nm: Technology, Design and Economic Implications

Process/device innovation has always been an indispensable part of scaling

(intel) 6

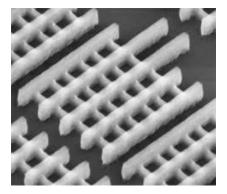
12 / 46

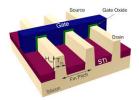

December 17, 2015

Source: Intel

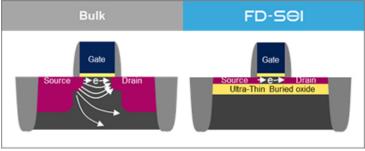
A. Rivetti (INFN-Torino)

The FinFET




(a) Normal Wafer: FinFETs on regular wafers rely on a timed etch to form the fins

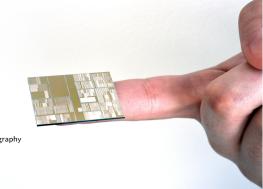
FinFETs in Silicon



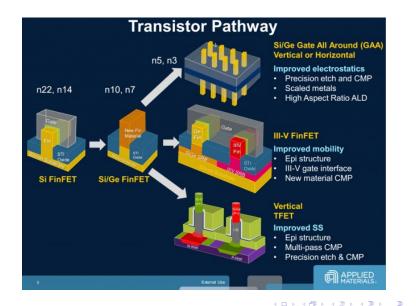
< □ > < ---->

Fully Depleted SOI

Source: STM


- Advantages of UTB-FD-SOI
 - $\rightarrow~$ Fast switching speed
 - $\rightarrow~$ Low leakage currents
 - \rightarrow Dynamic control
 - \rightarrow "Simpler" process
 - $\rightarrow~$ Scalable at leat to 10 nm

э


Towards 5 nm

- CMOS scaling will likely continue down to 5 nm (2021-2028)
- '3D transistors: FinFET, gate all-arounde devices
- Non-silicon channel materials: SiGe, III-V compounds (e.g. InGaAs)

http://arstechnica.com/gadgets/2015/07/ibm-unveils-industrys-first-7nm-chip-moving-beyond-silicon/gadgets/2015/07/ibm-unveils-industrys-first-7nm-chip-moving-beyond-silicon/gadgets/2015/07/ibm-unveils-industrys-first-7nm-chip-moving-beyond-silicon/gadgets/gadg

SiGe channel and EUV lithography

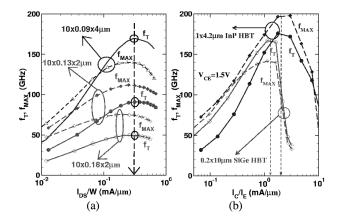
Scaling: a key consequence

MOS in strong inversion:

$$I_{DS} = \frac{1}{2} \mu C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} \right)^2 \qquad \qquad g_m = \sqrt{2 \mu C_{ox} \frac{W}{L} I_{DS}}$$

MOS in weak inversion:

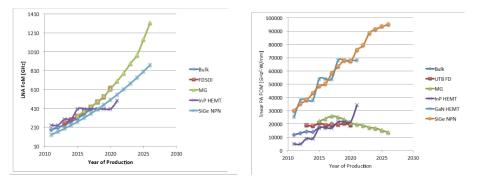
$$I_{DS} = 2n\mu C_{ox}\phi_T^2 \frac{W}{L} e^{\frac{V_{GS} - V_{TH}}{n\phi_T}} \qquad g_m = \frac{I_{DS}}{n\phi_T} \qquad I_C = \frac{I_{DS}}{2n\mu C_{ox}\frac{W}{L}\phi_T^2}$$


Bipolar transistors

$$C \propto e^{rac{V_{BE}}{\phi_T}}$$

 $g_m \propto rac{V_{BE}}{\phi_T}$

As technology shrinks, MOS transistors behave more and more as bipolar


Transistor's speed

S. P. Voinigescu et al., A Comparison of Silicon and III-V Technology Performance and Building Block Implementations for 10 and 40 Gb/s Optical Networking ICs, IJHSES, Vol.13, No.1, paper 2, March, 2003

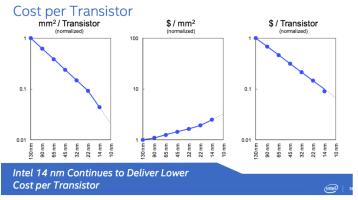
The ITRS view

Tables from ITRS 2013

- For RF LNA CMOS is bound to outperform even SiGe transistors
- For RF power amplifiers SiGe bipolar still unbeatable

< A

S. Hyun Park et al Performance Comparisons of III-V and strained-Si in Planar FETs and Non-planar FinFETs at Ultra-short Gate Length (12nm)


©IEEE, DOI:0.1109/TED.2007.915056

Structure	Single-gate		Double-gate		Triple-gate	
Material	InGaAs	Si	InGaAs	Si	InGaAs	Si
SS [mV/dec]	97	91	84	75	69	71
DIBL [mV/V]	234	190	91	93	54	59
<i>I</i> _{ON} [μΑ/μm]	1033	1196	1747	2020	2490	2629
V _{INJ} [cm/s]	3.3×10 ⁷	1.1×10 ⁷	4.5×10 ⁷	9.5×10 ⁶	4.7×10 ⁷	1.1×10 ⁷
N_{INV} [/cm ²]	1.5×10 ¹²	5.7×10 ¹²	2.1×10 ¹²	1.1×10 ¹³	3.7×10 ¹²	1.8×10 ¹³

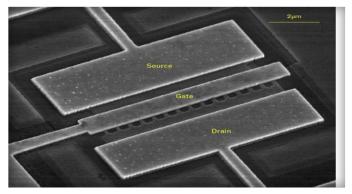
- Silicon is at the end quite robust
- FinFET's have a better subthreshold slope, this implies closer-to-bipolar g_m/I_D
- Novel devices like TFETs have the perspective of a g_m/I_D even better than bipolar!

A look at economics

Scaling is at the end driven by the dismal science

source: Intel

- Scaling has made transistors cheaper and cheaper at each generation
- There is surely limit to CMOS scaling, but other technologies will come to the rescue


- (A 🖓

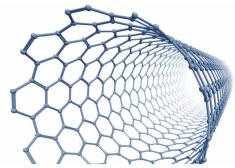
TFET on the edge?

HOME (HTTP://WWW.EXTREMETECH.COM) COMPUTING (HTTP://WWW.EXTREMETECH.COM/CATEGORY/COMPUTING) TOSHIBA WANTS TO RESHAPE THE CHIP INDUSTRY WITH NEW LOW-POWER TUNNEL FETS, \$2 BILLION INVESTMENT

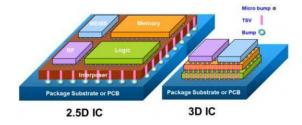
Toshiba wants to reshape the chip industry with new lowpower tunnel FETs, \$2 billion investment

By Joel Hruska (http://www.extremetech.com/author/jhruska) on September 10, 2014 at 2:35 pm 12 Comments (http://www.extremetech.com/computing/189757.toshiba-wants-to-reshape-the-chip-industry-with-newlow-power-tunnel-fest-2-billion-investment/disqus_thread)

TFET may cut digital power consumption by 80%


A. Rivetti (INFN-Torino)

IBM carbon nanotube discovery paves way for post-silicon future


by Mark Tyson on 2 October 2015, 13:01

Tags: IBM (NYSE:IBM) Quick Link: HEXUS.net/qacu4m Add to My Vault:

IBM says that its scientists have made a major engineering breakthrough that could help speed the transition from siliconbased transistors to those constructed from carbon nanotubes. Its new discovery, which concerns the two contacts of a transistor, leads IBM to believe that its carbon nanotube technology could scale all the way down to 1.8mn.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

- 3D stack is a way to continue Moore's law
- It is now being more pursued by the industry
- It allows in addition heterogeneous integration
- 3D MPW services now being regularly offered

3D integration at play

NEWS

Samsung unveils 15TB SSD based on densest flash memory

MORE LIKE THIS

Samsung releases world's first 2TB consumer SSDs

Today's NAND flash has hit a development dead-end

SanDisk, Toshiba double down, announce the world's highest capacity 3D NAND...

on IDG Answers A

If I buy a Chromebook and can't get to grips with OS can I convert to windows?

An exploded view of one of Samsung's 2.5-in SSDs. Credit: Samsung

Epson Document Scanners

୬ ଏ ୯ 26 / 46

December 17, 2015

Progess in critical blocks: ADC

$$FoM = \frac{P}{2^{ENOB} \cdot F_s}$$

Technology	Architecture	N of bit	Sampling rate (MS/s)	ENOB	Power (mW)	FOM (Fj/step)
90 nm	SAR	9	40	8.23	0.82	68
130 nm	SAR	10	50	9.11	0.82	30
65 nm	SAR	10	100	9.01	1.13	22
90 nm	FLASH+SAR	9	100-200	8.44-8.31	0.75/1.33	34.7
90 nm	SAR	10	50	9.5	0.32	9

- Conversion speed of 100 200 Ms/sec can be achieved with 1 mW or less
- SAR and its variant has become a dominant topology
- Almost digital-only approach, amenable to scaling

Ultra-scaled ADCs

26.4 A 3.1mW 8b 1.2GS/s Single-Channel Asynchronous SAR ADC with Alternate Comparators for Enhanced Speed in 32nm Digital SOI CMOS

Lukas Kull^{1,2}, Thomas Toifl¹, Martin Schmatz¹, Pier Andrea Francese¹, Christian Menolfi¹, Matthias Braendli¹, Marcel Kossel¹, Thomas Morf¹, Toke Meyer Andersen¹, Yusuf Leblebici²

Specifications	[1]	[2]	[3]	[4]	[5]	This work		
Architecture	SAR	Ti-SAR	Ti-SAR	SAR	SAR	SAR		
CMOS Technology (nm)	65	65	65	28	40	32		
Resolution (bits)	8	6	8	8	6		8	
Supply Voltage (V)	1.2	1.2	1.0	1.0	1.0	1.0	1.1	0.9
SNDR near Nyquist (dB)	44.5	31.5	42.75	43.3	30.5	39.3	39.3	38.8
Sampling Speed (GHz)	0.4	1	1	0.75	1.25	1.2	1.3	1.0
Speed per Channel (GHz)	0.4	0.5	0.5	0.75	1.25	1.2	1.3	1.0
Power (mW)	4.0	6.7	3.8	4.5	6.08	3.1	4.2	2.0
FOM (fJ/conf step)	73	210	24	41	178	34	43	28
Area (mm²)	0.024	0.11	0.013	0.004	0.013		0.0015	
Area for 64GS/s (mm ²)	3.8	7.0	8.3	0.26	0.67	0.080	0.074	0.096

Image: A matrix of the second seco

Technology	Architecture	Resolut ion (ps)	Sampling rate (MS/s)	Range (ns)	Power (mW)	Area
130 nm	GRO	1	50	12	2.2-21	0.04
130 nm	Vernier-ring	8	15	32	7.5	0.26
90 nm	Passive inter.	4.7	180	0.6	3.6	0.02
90 nm	Delay line	20	26	0.64	6.9	0.01
65 nm	2D delay line	4.8	50	< 0.6	1.7	0.02
90	Time Amp.	1.25	10	0.64	3	0.6
90	Vernier+GRO	3.2	25-100	40	3.6-4.5	0.027

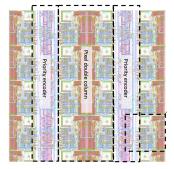
- TDCs are now hitting sub-ps resolutions
- They are now compact and low-power blocks
- A variety of architectures
- Mostly digital blocks \rightarrow improve with scaling

The industry: where it is, where it is going

3 Detector electronics: where it is, where it is going

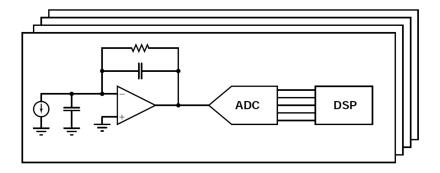
4 Conclusions

- Specs are vastly different from applications to applications
- In general, we want more with less
- Better space resolution
- Better time resolution
- More data bandwith
- More in situ processing
-


FEI-4 for ATLAS hybrid pixels

- Full reticle chip
- Shared-logic between pixels
- Digital-only outputs
- CMOS 130 nm
- \rightarrow Digital-on-top design approach

Advanced monolithics


ALPIDE chip - ALICE ITS

- Hybrid-like readout
- Pixel size: 30 μ m \times 30 μ m
- Peaking time: 2 μs
- Power: 40 mW/cm²
- Technology: CMOS 180 nm
- \rightarrow Integration of sensing and signal processing electronics

Full digitizing architectures

< m

æ

DSP-like chips

Super-ALTRO chip, CERN

S-ALTRO key performance					
Gain	12, 15,19, 27 mV/fC				
Peaking time	30, 60, 90, 120 ns				
Signal polarity	both				
Detector capacitance	4-20 pF				
Number of bits	10				
Sampling Frequency	10-40 MHz				
Power (active)	47 mW/ch				
Power (sleep)	0.6 mW/ch				

S-ALTRO power break down				
PASA	10 mW/ch			
ADC (analog)	31.28 mW/ch			
ADC (digital)	1.7 mW/ch			
DSP	4 mW/ch			

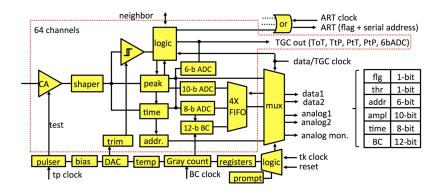
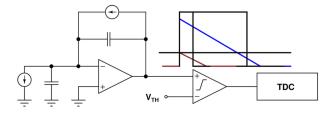

	110	1. 11/1/20	1/
Anne se prise	ANNUAL PROVIDE	Mannalda	
(and the second			
ana			
10001000			
			-
annen an			-
anarana)			
(amanana)			
			-
			-
			2
International Contraction			
and the second			
1 Sampling	ining paper	CHINESEN I	
	11 111	TIMPIN C	

Image: A matched block

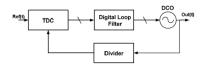
3

Mixed-signal ASICs


VMM ASIC, BNL

э

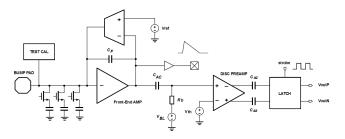
(日) (同) (三) (三)

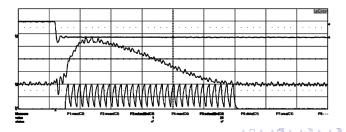

Time-domain signal processing

• TDCs are built with digital gates or analog circuits with low dynamic range

- Digitization can occur in the time domain measuring directly the ToT
- Very fast and simple Wilkinson ADC can be built

- TDC used to measure phase difference in ADPLL
- With scaling technologies speed of gates increases
- Work in the time domain also to measure voltages

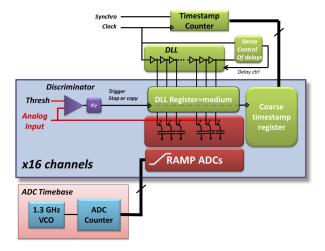

K. Otsuga et al,


IEEE International SoC Conference, 2012

(日) (同) (三) (三)

Time-domain processing for detectors

CHIPIX65, INFN



A. Rivetti (INFN-Torino)

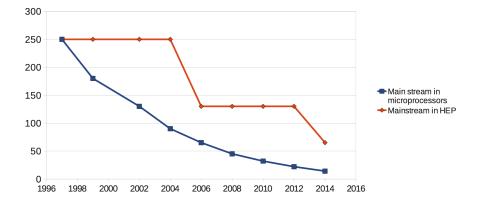
Fast Waveform Digitizer

E. Delagnes et al., Reaching a few picosecond timing precision with the 16-channel digitizer and timestamper SAMPIC ASIC NIM A 787 (2015) 245-249

3

3D-TSV

CERN Medipix TSV PROJECT – Second run – Integration


- Comparison between WB and TSV on board integration

41 / 46

A. Rivetti (INFN-Torino)

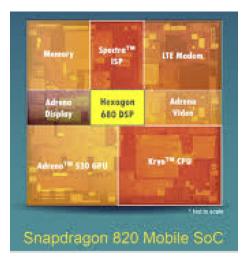
The digital divide (again...)

< A

Introduction

2) The industry: where it is, where it is going

3 Detector electronics: where it is, where it is going


4 Conclusions

- 一司

- Next ten years in front-end electronics for radiation detectors will still be dominated by CMOS technologies
- Ultra-scaled CMOS processes may provide opportunities for extraordinary performance improvements
- Ultra-scaled processes are affordable for R&D
- Ultra-scaled processes can be affordable for very low or very high volumes
- Scaled and less scaled technologies will coexist for several years

- Need to take advantage non only from the progress on technology, but also from those on key building blocks
- 3D integration coming of age
- Highly complex, monolithic CMOS sensors becoming a reality
- Design tools are vey powerful but also very complex

This is complexity

Snapdragon 820, O(100) man years of work...

A. Rivetti (INFN-Torino)

< □ > < ---->