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Abstract— We present a project which aims to develop an 

extremely fast but compact processor, with supercomputer 

performances, for pattern recognition, data reduction, and 

information extraction in high quality image processing. The 

proposed hardware prototype features flexibility for potential 

applications in a wide range of fields, from triggering in high 

energy physics to simulating human brain functions in 

experimental psychology or to automating diagnosis by imaging 

in medical physics. In general, any artificial intelligence process 

based on massive pattern recognition could largely profit from 

our device, provided data are suitably prepared and formatted. 

The first goal is demonstrating the system can perform online 

track reconstruction of full events at the highest luminosities of 

the Large Hadron Collider at CERN beyond the limits of any 

existent or planned device. This task has to be performed inside a 

fixed latency of few tens of microseconds despite the 

overwhelming confusion due to the high track multiplicity 

produced by the exceedingly large number of proton-proton 

collisions overlapping in the same image recorded by the 

detector. With this goal we participate to the construction and 

the test for a high precision real-time tracker built for the Large 

Hadron Collider experiments, recently approved for the ATLAS 

experiment upgrade: the Fast Track (FTK) processor. FTK can 

improve the capability of the detectors to select the events with 

the greatest scientific potential. It uses FPGA and ASIC chips to 

implement real-time, complex track reconstruction algorithms. 

The track's trajectories are reconstructed in 3D, in few dozens of 

microseconds and the quality of the parameters is similar to the 

one of algorithms running minutes in the CPU farms.  

In parallel we pursue challenging R&D & new real-time 

computing ideas for more complex applications.  

We are funded by the FP7 Industry-Academia Partnerships 

and Pathways (IAPP) action. (Abstract) 
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I.  INTRODUCTION (HEADING 1) 

The physics program at CERN’s Large Hadron Collider 
(LHC) [1] has been extremely successful since the early phase 
of data taking in the year 2010. The LHC detectors were 
designed to search for new discoveries in the head-on 
collisions of protons of extraordinarily high energy (14 TeV). 
Among the most interesting searches are the origin of mass, 
with the extremely important observation of the Higgs boson 
[2], extra dimensions of space, unification of fundamental 
forces, and evidence for dark matter candidates in the Universe.  

Moreover, the LHC upgrade will widen our capability to 
search new phenomena that are beyond the scope of our current 

theory of matter and energy. In the next few years an 
impressive harvest of data will be collected and at the same 
time R&D at the technological frontier will be pursued for the 
upgrades. The partners of this project are active and essential 
participant in both aspects. These experiments will have a 
fundamental impact on physics and technology for the next 20 
years.  

In this scenario the electronics required to process the 
signals from the LHC complex detectors are taking a very 
important role, and they must be state of the art. The most 
interesting processes are very rare and hidden in an extremely 
high level of background. Implementing the most powerful 
selections in real-time (trigger) is therefore essential to fully 
exploit the physics potential of experiments where only a very 
limited fraction of the produced data can be recorded. The data 
flow is so massive (1.7MB/25ns ~ 80TB/s [3]) that a drastic 
real-time data reduction must be obtained. This makes on-line 
event reconstruction a critical component at any hadron 
collider experiment, in particular at LHC. A multi-level trigger 
[4] is an effective solution for an otherwise impossible 
problem. The level-1 (L1) has strong latency constraint (few 
microseconds). It is usually based on custom processors. It 
reduces the rate of events from the machine event production 
down to tens of kHz. In particular for LHC, the level-1 trigger 
reduces the event rate from 40MHz to 100 kHz. Subsequent 
levels, like level-2 and level-3 triggers, used to be well 
separated in previous experiments, with dedicated hardware 
used at L2. Current experiments, like CMS [5] and ATLAS [6], 
have them unified in one single high-level trigger (HLT) 
running on dedicated CPU farms.  

This project directly addresses the main technological 
challenges of hardware, software and data analysis necessary to 
face the real-time reconstruction of particle trajectories at 
trigger level. This is the trigger task that requires the larger 
online computing power.  

The first important goal of this project is the realization and 
optimization of the Associative Memory (AM) system to make 
it work in the Fast Tracker (FTK) processor [7] recently 
approved by the Atlas experiment at LHC and its future 
evolution for new applications. FTK is a high-performance 
"super-processor" based on the combination of two innovative 
technologies: powerful FPGAs (Field Programmable Gate 
Arrays) working with standard-cell ASICs (Application-
Specific Integrated Circuits), the Associative Memory (AM) 
chips [8], for utmost gate integration density. The target is to 
get the best results by combining the high performance of 
VLSI dedicated hardware with the distinctive flexibility of 
modern programmable logic. Optimal partitioning of complex 
algorithms on a variety of computing technologies has been 



already proved to be a powerful strategy, which turned the past 
hadron collider experiment CDF [9] at the Tevatron accelerator 
in the Fermilab Laboratory, near Chicago (USA) into a major 
player in the field of B-physics, on par with dedicated 
experiments operating at e+e- colliders.  

A complementary and not secondary goal is the 
dissemination and application of this technology outside of the 
high energy physics (HEP) research. We believe that HEP 
developments in this area are important to show the potential of 
these devices and to spread the skills needed to use them with 
top efficiency. Our system is an example of solution for a 
specific case of the “Big Data” problem.  This solution is based 
on the organization of the trigger in different levels of 
selections, exploiting at low level parallelized, dedicated 
hardware for an extremely efficient preprocessing step.  

This organization is similar to models of the vision 
processing task performed by the brain.  We plan to study the 
possible impact of our devices for neurophysiologic studies of 
the brain. Understanding how the brain processes information 
or how it communicates with the peripheral nervous system 
could provide new potential applications, new computational 
systems that emulate human skills or exploit underlying 
principles for new forms of general purpose computing. 
Significant improvements could be gained in terms of 
performance, fault tolerance, resilience or energy consumption 
over traditional ICT approaches. The use of the associative 
memory processor for brain studies is particularly fascinating. 
The most convincing models that try to validate brain 
functioning hypotheses are extremely similar to the real-time 
architectures developed for HEP. A multilevel model seems 
appropriate to describe the brain organization for image 
processing [10]: “the brain works by dramatically reducing 
input information by selecting for higher-level processing and 
long-term storage only those input data that match a particular 
set of memorized patterns. The double constraint of finite 
computing power and finite output bandwidth determines to a 
large extent what type of information is found to be meaningful 
or relevant and becomes part of higher level processing and 
longer-term memory”. The AM pattern matching has 
demonstrated to be able to play a key role in high rate 
filtering/reduction tasks. Simulations [10] have shown the 
potential of the pattern matching algorithm on static 2-D 
images. We are implementing the algorithm on our technology 
to extend its application to 3-D images and movies.  These 
studies could have an impact in the area of medical imaging for 
real-time diagnosis and the study of this possible application is 
part of the project program. The computing power is still a 
limiting factor for some high quality medical applications. 
High-resolution medical image processing, for example, 
demands enormous memory and computing power to allow 3D 
processing in a limited time. One example is lung cancer 
Computed Tomography (CT) screenings that profits of 
Computer-aided detection (CAD) of pulmonary lesions to 
reduce the diagnosis times and the risks of errors. Our 
technology could be an interesting accelerator for such 
computations. 

In brief this paper focus on the two main goals of the FP7 
project: in section II we describe the AM system developed for 
FTK, its performances and its future evolution, in section III 

we describe the ongoing R&D for the brain study and its 
possible application to medical imaging. 

II. PATTERN MATCHING AT HADRON COLLIDERS 

A. The tracking problem at LHC and our proposed solution 

Tracking devices, and in particular silicon detectors that are 
becoming the predominant tracking technology, play an 
essential role in the identification of interesting events. In fact, 
they provide very detailed information for charged particles 
and they can separate most of the different particle trajectories 
in the overlapping collisions recorded in the same image (see 
Fig. 1).   

However, these detectors contain hundreds of millions of 
channels, so they require huge computing power for full track 
reconstruction. They make the problem of complete tracking a 
formidable challenge even for large computing farms [11]. 
Therefore, complete high-quality tracking for real-time event 
selection at very high rates has been considered impossible in 
LHC experiments at the time they were built. Real-time 
tracking was planned for limited detector regions or on a small 
subset of events, previously selected using other detectors [6].  

 
Fig. 1. An event produced at LHC. Image credit: Andre Holzner 

(http://cms.web.cern.ch/news/reconstructing-multitude-particle-tracks-within-
cms). 

 

We overcome the problem by providing real-time tracking 

using a massively parallel high performance system [7].  

Our goal today is the real-time reconstruction of all the tracks 

above a minimum energy for all the events selected by the L1 

trigger, which correspond to an event rate of 100 kHz.  Given 

the complexity of the events, the input data rate to the system 

is expected to be ~200 GB/s at the maximum LHC luminosity. 

The maximum supported data rate is 400 GB/s 

A key role in the architecture is played by high-

performance field programmable gate arrays (FPGAs), while 

most of the computing power is provided by full-custom 

ASICs, the Associative Memory (AM) chips [8].  AMs exploit 

massive parallelism in data correlation searches by comparing 

the input data simultaneously to a list of pre-calculated 

"expectations" (pattern matching). These correlations (i.e. the 

matched patterns) are found by the time input data are loaded 

into the devices. 

The AM chip has characteristics similar to a Content-

Addressable Memory (CAM) [12]. However, the design of the 

AM is conceptually different to that of a CAM. In the AM 

each pattern is not stored in a single memory location, like in 

the commercial CAM, but it consists of 8 independent 16-bit 

memory locations, in which the coordinate locations of the 

http://cms.web.cern.ch/news/reconstructing-multitude-particle-tracks-within-cms
http://cms.web.cern.ch/news/reconstructing-multitude-particle-tracks-within-cms


position where the particle hits the silicon detector (hit) [13] 

can be stored. The innovative characteristic of the AM is that 

each one of these 8 words has a comparator and a match flip-

flop to compare continuously the stored data with its own 

input data stream. Data are sent on 8 parallel buses, one for 

each word of the pattern. All words in the AM make 

independent and simultaneous comparisons with the data 

serially presented on its own bus. Every time a match is found, 

the match flip-flop is set and remains set until the end of the 

event processing, when a reset signal is propagated. A pattern 

matches when a predefined number of the flip-flops is set 

(user defined threshold). All the matched patterns are read out.  

An extensive description of the AM and its operation can be 

found in [8].  

FPGAs configure and control the AMs and their I/O, 

providing the flexible computing power to process the selected 

patterns. Distributed debugging and monitoring tools suited 

for a pipelined, highly parallelized structure and a high degree 

of configurability can cope with a variety of applications. 

 
B. System Segmentation and Scalability  

The input bandwidth sets an upper limit either on the event 

rate or on the size of the detector connected to the processor. In 

order to sustain very high event rates, it is necessary to 

organize the system as a set of independent engines (typical 

input bandwidth of each one 1.6 GB/s), each one working on a 

different sector of the silicon tracker. Let us imagine dividing 

the detector into azimuthal sectors. This segmentation 

generates some inefficiency at sector boundaries that can be 

removed by allowing a small overlap region between adjacent 

sectors. Thus, the system is scalable and can grow to provide 

higher computing power to cope with the detector occupancy 

increases due to the increment of the LHC luminosity. The AM 

system that is approved for the current ATLAS detector 

upgrade stores 1 billion (109) AM patterns [7] into 128 

AMBSLP boards. 

Fig. 2 shows the AMBSLP motherboard, equipped with 4 

mezzanines. Each mezzanine has 16 AM chips (see fig. 2 on 

the right) for a total of 64 chips per AMBSLP. We foresee an 

enlargement of more than a factor 10 for the LHC future 

upgrades without a significant increase of boards thanks to the 

miniaturization process due to the technology advancement.   

  
Fig. 2: The AMBSLP 9U VME board and its mezzanine 

B. Implementation 

The design of the AMBSLP has been a challenging task, 

due to the following factors: (1) the high pattern density (8 

million patterns per board today), which requires a large 

fraction of the board to be filled by AM chips; (2) the I/O 

signal congestion at the board level, which requires the use of 

a huge network of serial links; (3) the power limitation due to 

the available cooling system: as we can fit up to 20 AMBSLPs 

in a VME crate, the power should not exceed 250 W per 

AMBSLP. We have on purpose chosen the 9U VME standard 

to spread around computing elements and I/O resources on the 

large area provided by the 9U mechanics. We implement a 

large number (~850) of medium frequency (2 Gbit/s) serial 

links to keep low the consumption per unit area on the PCB. 

However, the total traffic on the board is above the Tbit/s, for 

a total of more than 100 Tbit/s in the whole AM system used 

by the ATLAS experiment. Each AMBSLP executes more 

than 67 million 16-bit word comparisons every 10 ns. At each 

clock cycle data are distributed in parallel to the large number 

of patterns with fan-outs of 1:8 million. 

C. Performances 

Candidate tracks are found exploiting the detector readout 
time, few clock cycles after the arrival of the corresponding 
detector channels belonging to the track.  

This powerful highly parallel dedicated hardware has been 
demonstrated using the experiment simulation [7] to provide 
excellent performance, reaching resolutions, efficiencies and 
fake track rejection typical of the best tracking algorithms. For 
this reason, the use of the system in offline simulation has also 
been proposed [14], with the advantage of a low power usage 
(250 W/board). The system in fact is very compact and 
requires simplified infrastructures [15] compared to the ones 
necessary for the huge CPU farms executing an equivalent 
task. Four racks of electronics, for a total power of ~40 kW, are 

able to reconstruct events with an average latency of ~100 s 
[7], while offline tracking requires several seconds when 
performed on events containing 60 p-p collisions [11].  

One interesting technology which recently has attracted the 
attention of the high energy physics community for real-time 
applications is graphic processing. Both ATLAS ([16], [17]) 
and CMS [18] are studying the performance of real-time 
tracking at LHC executed on modern Graphic Processing Units 
(GPUs). Even if the comparison with the CPU performances is 
promising, the latency to execute tracking is at least tens of 
milliseconds for simplified algorithms and reduced detector 
occupancies, with a fast grow above hundreds of milliseconds 
when the occupancy increases. In conclusion, our hardware 
dedicated approach is today thousands of times faster than any 
available commercial computing device.  

D. R&D for the Future Evolution 

The short latencies, reachable by the parallelized AM 
system, push both CMS and ATLAS to study its possible 
application at L1 [19] for the future accelerator upgrades, when 
the LHC luminosity will cause the superimposition of hundreds 
of collisions in the same image and will require much faster 
and more efficient trigger selections. This new possible area of 



application requires to achieve further technology performance, 
miniaturization and integration of the current state of the art 
prototypes. The L1 trigger is much more demanding in terms 
of a higher rate of events to be processed and a shorter 
processing latency time. 

To face the increase of complexity we plan to increase the 
FPGA parallelism by associating one single FPGA to each AM 
chip. The FPGA configures and handles the AM and provides a 
flexible computing power to process the shapes selected by the 
AM [20]. An innovative multi-chip package (System in 
Package, SiP) including both the AM chip and the FPGA in the 
same space, should provide the final necessary miniaturization 
with the aim of enhancing performance and power saving 
without increasing the volume of the hardware. 

Our long-term future goal is to produce a powerful and 
miniaturized hardware that can be used as coprocessor also for 
offline event simulation [14]. 

III. EMULATING THE BRAIN FOR IMAGE PROCESSING 

In [10] a study of a brain model for image preprocessing is 
presented and successfully applied to static 2-D images. Since 
the needed computational time cause serious limits to the 
capability to extend these studies to 3-D images and movies, 
we plan to use the AM-based processor for a real-time 
hardware implementation of fast pattern selection/filtering of 
the type studied in these models of human vision.   

A. The filtering Algorithm  

Fig. 3 shows the results of the simulations of the model 
described in [10] where pattern matching with relevant patterns 
is used to filter the main features of the image. 

 

Fig. 3: natural image (a) and corresponding filtered images(b,c) 

 

The pictures on the right (b,c) show the quality of the 
filtered images. The butterfly can be clearly recognized even if 
the image information is reduced at the level of 10% or less of 
the original content. The associative memory works as an edge 
detector implementation able to extract the salient features.  

The pattern is defined as the collection of pixels contained in a 
3×3 pixel square, as shown above the butterfly image (a) in fig. 
3.  Each square is converted in a 9 bit sequence (each bit is 1 
for a black pixel and zero for a white one in the case of B/W) 

or an 18 bit sequence in case of 4 level greys (2 bits/pixel). The 
bit sequence is used to identify the pattern. 

Starting from the left top corner the image is scanned by the 
3×3 square that is moved in step of one pixel toward the right. 
When the row is finished, the square is moved one pixel down 
to scan again the raw from the left to the right. Each pattern 
detected in the figure during the scan is compared to the set of 
“relevant patterns” predefined by a training phase. It is rejected 
if it does not match any of them; it goes back in its position in 
the picture if it is accepted. Fig. 3 shows two collections of 
relevant patterns for two different selections. The 16 patterns in 
the blue box produce a larger reduction of information in the 
final image than the 50 patterns in the green box. Smaller is the 
set of chosen patterns stronger is the information reduction. 

Analyzing 3-D images or movies increases enormously the 
number of possible and relevant patterns. The pattern in this 
case is not a square, but a cube of pixels: a set of three 3×3 
squares taken from 3 subsequent frames. Each pattern for B/W 
is made of 27 bits corresponding to 2

27
 possible patterns. If 4 

levels of grey are necessary the total number of patterns 
becomes 2

54
. One goal of the study is to understand which is 

the minimum set of “relevant patterns” in these complex cases 
and how much large has to be the memory to contain them. 

B. Implementation 

Our initial plan was the use of exactly the same hardware (see 

Fig. 2) developed for HEP, adapted for generic imaging. The 

VME solution is very powerful and offers a lot of 

computational power but it is large (not portable) and requires 

a specific interface (VME standard). It is not easy to use for 

every day applications. For these reasons we decided to try a 

more modern, compact solution. One of our key goals is the 

miniaturization of the system in new modern standards with 

the objective to make the system suitable for an open range of 

applications in which massive and parallel data processing 

makes the difference. 

 
Fig. 4: The hardware setup for image processing: this is an evaluation board 
with a Kintex Ultrascale, which is the state of the art in FPGA devices, with a 

single AM chip mezzanine placed on the FMC connector. 

 

The new Control Board needs the following characteristics: 

1)  powerful FPGA (Field Programmable Gate Arrays) 

with large on-board memory, 
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2)  Ethernet & PCI Express I/O, 

3)  handling (distribution and collection) of all AM chip 

serial links, 

4)  configuration and control of the AM pattern bank, 

5)  provision of extra functionality to complete the AM 

functions in real-time. 

While the AM chip needs challenging developments, one of 

the advantages of the FPGA imaging task is that boards 

already available on the market are powerful enough to cover 

the above listed specifications. New generation commercial 

FPGAs are already available (e.g. Xilinx Ultrascale FPGAs) 

and will allow us to develop the high performance embedded 

system required in parallel with the development of the new 

generation AMchip. Fig. 4 shows the computing unit used 

today, based on a Xilinx Ultrascale evaluation board. A new 

mezzanine with multiple AM chips can be connected to the 

large connector on the top of the board, but for the moment we 

start with a single chip mezzanine as shown in the figure. 

The algorithm is divided in two main parts: “Training 

Phase” and the “Real-Time patterns recognition phase”, what 

we call the “data taking phase”. Most of the functions are 

executed by the FPGA with the only exception of the “Real-

time patterns matching phase”, that is executed by the 

associative memory. 

A challenging task of the implementation is the “Training 

Phase”. It is subdivided in the following steps: 

1. Calculation of the pattern appearance frequencies: The 

embedded system receives the image bit-streams (e.g., 

data from a PC or a video camera). The FPGA 

partitions/reorganizes the input data into the small 3×3 

pixel patterns. Then, for each pattern, the FPGA 

calculates the occurrence frequency in the processed 

images/frames. This calculation is iterated for all possible 

patterns in a large set of training images. In this way, 

different Probability Density Histograms (PDHs) are 

computed for different training image sets. PDHs are 

different for different types of images, from different 

applications and sources. Medical images have different 

PDHs than natural images, security images etc. The 

training is required for the choice of relevant patterns. 

When the environment and the lighting conditions 

change, especially for security and machine vision 

applications for streaming video the training has to be 

executed continously in real-time. In this way the device 

adapts itself autonomously to the different conditions of 

the images that it observes.  

2. Pattern selection: the system must decide which set of 

patterns must be selected for memory storage (the 

relevant patterns). To maximize the capability to 

recognize shapes (both human-brain recognition and 

artificial recognition), we adopt the hypothesis described 

in [10], i.e., the principle that maximum entropy is a 

measure of optimization. The set of patterns that produces 

the largest amount of entropy allowed by system 

limitations is the best set of patterns that we can select to 

filter our images or videos. The system limitations can be 

summarized in two main parameters: N maximum 

number of storable patterns, and W, maximum bandwidth. 

In [10] are described the details of the selection. 

3. Pattern Writing operation: the relevant patterns (selected 

in step 2) are written in the AMchip bank. The writing 

operation is made via JTAG by means of a system 

controller. This is the last step of the Training Phase. 

When the training is complete, the “Real-time pattern 

matching phase” or “Data taking” can start: the system is able 

to work in real-time at the maximum frequency and is able to 

perform:  

1. Parallel recognition of patterns in the data stream. Input 

Patterns are sent to the AM bank and addresses of 

matched patterns are transferred at the output of the AM 

chips. 

2. Output formatting operation: The matched patterns are 

reorganized into a new image, to produce the filtered 

images/videos, called “sketches”, where only the 

boundaries of the relevant objects appears, while uniform 

areas are suppressed. 

C. Logic  Description 

The system needs to be able to perform both training and 

pattern identification in real-time for demanding streaming 

video applications. Several optimization techniques are used 

to achieve the best performance possible in the hardware 

implementation. The videoframes are stored in the external 

memory before being transferred in an internal frame buffer. 

As soon as enough data has been tranfered for the 3x3 patterns 

to be formed, a pattern identification matrix begins to be 

loaded that identifies and propagates two patterns per clock 

cycle to the pattern accumulators. The accumulators are 

designed to facilitate successive accumulation in the same 

memory location (“fall through” data logic). As soon as the 

whole image sample has been read, the pattern frequency is 

calculated by taking advantage the FPGA DSP slices. The 

pattern selection process is done by using logic with principle 

similar to the one used for pattern identification in the HEP 

FTK implementation, but appropriately optimized for image 

processing applications. The selected patterns are then loaded 

to the AM chips for the execution of the pattern matching 

process. The prototype of the system is being developed on a 

last generation FPGA device, a Xilinx Kintex Ultrascale 

XCKU040 using the KCU105 evaluation board. 

 
Fig. 5: Training Phase Block Diagram 



D. Reconstruction of contours 

The extracted features can be processed with fast but complex 

reconstruction algorithms implemented on FPGA devices as 

we do in the FTK project to find clusters of contiguous pixels 

above a certain programmable threshold [13]. As we process 

them producing measurements that characterize their shape, 

we can measure quantities of interest in medical applications 

like the size of the found spots, how circular or irregular the 

spot is. The algorithm can be extended to 3-D images. 

E. Lung cancer diagnosis: an interesting example application 

A lung cancer Computed Tomography (CT) screening 

produces 300-400 noisy slices per subject to be reviewed (fig. 

6). This is a huge amount of difficult work for radiologists. 

Computer-aided detection (CAD) of pulmonary lesions used 

as second reader can improve the radiologists’ detection 

ability. Nodules are identified because of their sphericity, so a 

3-D reconstruction could be particularly interesting to 

distinguish them from vessels and bronchial tubes that have 

long shapes in the lung images.  We plan to try this 3-D 

reconstruction on our pattern matching machine. 

 

 

Fig. 6 CT produces 300-400 noisy slices per subject to be reviewed 

IV. CONCLUSIONS 

Our project has been developed to improve the real-time 

tracking at hadron colliders, making it thousands of times 

faster than any other solution available today. It is a succesful 

example of Big Data processing. Our experience in this field 

shows the importance of highly parallelized dedicated 

hardware to reach extraordinary high computing performances 

with limited infrastructures and consumptions. Our long-term 

goal is the dissemination of our embedded  systems outside 

high energy physics. They can be powerful accelerators for 

high performance computing in scientific areas which have to 

solve a specific task, repeated an enormous amount of times, 

always the same.  
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