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Key features of non-equilibrium QFT: J

@ there exist many inequivalent ways to drive a quantum system with infinite degrees of
freedom away from equilibrium;

@ there exist therefore a large variety of different non-equilibrium configurations;
@ lack of a unified framework for all of them;

@ several different approaches exist: Keldish perturbation theory, Lindblad operator
approach, Landauer-Biittiker scattering formalism,...;

@ the art in this context is to construct a non-equilibrium state which provides a realistic
description of the physical situation one is dealing with;

@ keeping in mind these peculiar features of non-equilibrium QFT, there are two directions

among others, which attract recently much attention, triggered by remarkable
experiments in condensed matter physics.
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Recent progress in non-equilibrium QFT:

(a) quantum transport - systems in non-equilibrium steady state:

@ particle and energy (heat) currents;

@ current fluctuations and noise (noise specroscopy).

Experiments:

(i) quantum wires, quantum wire junctions and networks (electrons);
(ii) quantum Hall edges (anyons);

(iii) topological superconducting edges (ajorana fermions).

(b) quantum quench - systems in non-equilibrium and non-steady state:
quench at ty - Hamiltonian H(t) = Ho + 0(t — to)Hs.

@ universal features in the regime of relaxation (t > tg);

@ nature of the final (t — 0o0) equilibrium state.

Experiments:
(i) trapped ultra-cold atomic gases.
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Non-equilibrium quantum system with star graph geometry: J

Quantum junction with n terminals

n oriented semi-infinite terminals L; with coordinates {x >0, i =1,...,n};

n heat reservoirs R; = {3;, u;i} attached at infinity;

large capacity of R; - {8;, i} remain invariant after particle emission and absorption;
the vertex of the star graph represents a defect (impurity) characterised by a unitary
scattering matrix S;

the system is away from equilibrium if Sj; # 0 exists between (5;, 1) # (8;, 1)

Goal: Construct a non-equilibrium steady state for this setting
and explore its properties.
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Plan:

1.

General considerations:
@ symmetry content;
@ energy conversion and efficiency;

@ interaction.

. The Schrodinger junction - definition and basic properties:

@ the non-equilibrium steady state and the second principle of thermodynamics;
@ efficiency of the energy conversion in the Schrédinger junction;

@ role of the statistics.

. Complete description of the particle transport:

@ exact n-point connected current correlation functions and cumulants;

@ reconstruction of the underlying probability distribution - the core of the transport
problem;

@ physical interpretation of the distribution.

. Conclusions and prespectives.

—

. Santoni, P. Sorba, M. M., J. Phys. A: Math. Theor. 48 (2015) 055003;
. Santoni, P. Sorba, M. M., J. Phys. A: Math. Theor. 48 (2015) 285002;
. Santoni, P. Sorba, M. M., arXiv: 1601.01819.

M. Mintchev (INFN - Pisa) Quantum Transport and “Heat Engines” Pisa, January 21, 2016

5/26



Assume the following symmetry content: J

@ particle number conservation: Otjt — Oxjx =0
@ energy conservation: 010t — OxOxt =0
@ Kirchhoff rules: S dx(t,0,7) = 3001 0xe(t,0,7) =0
The two components of the total energy density: J
@ chemical potential energy density: ke = piji
@ heat energy density: qr = Ou — pijr
@ the associated currents kx = Wijx and Gx = Oxt — pijx

satisfy local conservation
Okt — Oxkx =0, 0tqr — Oxqx =0,

but violate the Kirchhoff rules, if not all of chemical potentials coincide (3 i # p)):

n n
D qu(t,0,i) = = pijx(t,0,i) # 0
i=1 i=1
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Simple consequences from the Kirchhoff rule violation:

@ the heat and chemical energies are not separately conserved;

@ since the total energy is conserved, conversion of heat to chemical energy or vice versa
occurs;

Lesson: away from equilibrium the quantum junction operates as
energy converter.

@ this feature is very general, being based on symmetry considerations only.
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Characterising the process of energy conversion:

define Q=—"1ax(t,0,i);
let W € H be any state of the system;

with our convention for the lead orientation

@, < O, heat energy — chemical energy ,

Q), > O, chemical energy — heat energy .

efficiency in the sate W: let . (L) be the set of positive heat (chemical) currents

—(Qy

n = S <Q> <0, (quantum "heat engine”);
EIEK+ (9x)y Y
_ (@) :
no= = (Q)y >0;
Z,eﬁJr ()uIJX> v
by construction 0<n<1, 0<n<1,;

In what follows | will focus on 7.
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Interaction J

@ interaction - codified in the unitary scattering matrix S characterizing the defect;

@ since the particle number is conserved,
o0 oo
He@HO. sm e,
m=1 m=1
S(m) _ the scattering matrix in the m-particle space H(m);
@ start with the simplest case where the energy transmutation shows up;
@ we assume in this talk that

s = s(k), sM =1 vm>2;

@ evidence from experiments with quantum wire junctions that the m > 2-body interactions
influence the quantum transport only marginally.

M. Mintchev (INFN - Pisa) Quantum Transport and “Heat Engines” Pisa, January 21, 2016 9 /26



Example - the Schrodinger junction: J

@ bulk dynamics:
1
(iat + —83) Y(t,x,i) =0;
2m
@ boundary condition (U € U(n), M-free parameter):

n
lim > [A(I—U)j +i(I + U);0x] ¥(t, x,j) = 0;
x—0— =
@ this is the most general b.c. ensuring the self-adjointness of the Hamiltonian;
@ scattering matrix (Kostrikin-Schrader 2000):

MI—-U) - k(I+1)]

S0 = "D TR )

@ scale invariant (critical) elements of this family:

S=USqU*, U€eU(n), Sq=diag(+l,+1,..,+1)
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The solution: J

@ the well known expression
. T[> dk . . k2

w(t’x, 1) = E / 76_1W(k)t_lkxa[(k) , w(k) A
oo 2m m

but with a deformed canonical (anti)commutation algebra
Ay ={aj(k), aj (k) : i=1,..,n, k €R};

[ai(k), aj(p)]+ = [a7 (k) &} (P)]+ =0,
[ai(k), a} (p)]+ = 2n[6;8(k — p) + S;(k)d(p + K)] .

@ P(k,p) =2m[;0(k — p) + Sjj(k)d(p + k)] - integral kernel of a projection operator.
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Algebraic construction of the non-equilibrium steady state: J

Consider the incoming sub-algebra Aii“,,- = {aj(k), af (k) : k > 0} associated to R; and perform
the following three steps:

@ take the Gibbs state Q5, ,,, over Aif,i;

1 Kk K
(Qﬂiwﬂi s OQﬁhMi) = (O)ﬁivﬂi = ETT [e K/O] , Z="Tr [e K':| 5
° dk . > dk ,
Ki=Bilh—ma), b= [ Srw(Ra(ak), a= [ Sakaln).
o 2m 0o 27

@ perform the tensor product Q};M =1 ;41

@ extend QEB“# by linearity to a state 3, on the whole algebra A using the scattering
relations

= Sj(k)aj(—k),  af(k) = Za SHOOR
Jj=1
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Few comments about Q3 ,: J

@ Qp ,, obtained is this way is called Landauer (1957)-Biittiker (1986) (LB) state.

@ adopting a quantum mechanical formalism, LB constructed actually the projection of
Qp,,, on H1) and H?), thus determining only the 2-point and 4-point )-correlators.

@ the above construction allows to derive the n-point non-equilibrium correlators.

@ example - the exact two-point function in the state Qg

> dk
(0 (e, Dtz e = [ SRR [, ()eH +

dji(k)Sji(k)e—ik?u -I—S*( )di(k 1k><12+Z ,(k di(k)S/,(k)e_lkxlz]

e Bilw(k)—pi]

TE o Bt—r] Dirac(+)/Bose(—)distribution .

dE(k) =

i

@ In the bosonic case we assume p; < 0 for avoiding singularities.
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Exploring the properties of Qg ,: J

@ using (*(t1,x1,i)Y(t2,x2,/)) g, ONE can compute
Ux(t,X, i)>ﬁ,,u,a <9Xf(t7X7 i)>B,;.L7 (qX(t’X’ i)>6,u'

and start studying the non-equilibrium features of Qg5 ,.

Here:

@ particle current

St 1) = 5 [0 (D) — (B )] (83,1

@ energy current

OXt(t’ X ’) = ﬁ[(aﬂﬁ*) (8X¢) + (8X¢*) (8t¢) - (6t6x'¢*) Tﬁ - ¢* (8t8x¢)](tvxv ’) .

@ heat current

qx(t,X, I) = ext(t,X, I) —ll:ijx(t,X, I)
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Fundamental property of €23, - nonnegative entropy production:

n
s = _Zﬁiqx(tvxz ’)7
i=1

In fact,

S =2 [ SET IS0 [2:(6) — oi(k)] (k) > 0,

ij=1

o) = Bl — il . ) =

because the integrand is nonnegative (Nenciu 2007):

@ d;j(k) is a strictly decreasing function of o;;

@ the inequality F(x) — F(y) < (x — y)f(y), where F is any primitive of a strictly
decreasing function f, holds.

Since <$>B,u > 0 one can expect that 1 behaves like the efficiency of a “heat engine”.
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Efficiency 7 in the two-terminal system in the LB state - fermions:

J

@ without loss of generality one can assume 3> > fi;
@ then the efficiency n of converting heat to chemical energy takes the form

_ (N2 —,u,l)(jx(t,x, 1))5,M .
<qX(t7X71)>B>H ’

@ in the scale invariant case one gets

(A1 = rX2) [In (1 + e_)‘l) —rlin (1 + e_kz)}

1AL A2 1) = e e N — rin (14 0] = [Lia (—e ™) — PLi (e 2]
r= & €[o,1], Ni=—Bipi, i=1,2, (dimensionless parameters) .
2

@ amount of heat energy converted in chemical energy:

00w A =~ S22 0 = ) [rin (14 e ) i (146

2#5%
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Basic properties of 7: J

@ one easily shows that
$>0 = (1, r)<1—r=n,, (Carnot efficiency);
@ the maximal efficiency is obtained in the limit A; = A2 — oo

= A\ r)=1—-r= ;
Nmax(r) )\—I>Too n(X, A r) r=nc
@ the efficiency 7 is decreasing with increasing of the energy conversion —Q, and vice versa;

@ 1 compared to n¢ (left) and the heat —Q converted to chemical energy (right) with
A =1 (dotted), A = 3 (dashed) and A\ = 5 (continuous) :
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Efficiency at optimal energy conversion: J

@ a simple analysis shows that the function —Q(A1, A2, r) reaches its maximum at
M=X=X, XM -1+ )(l+e?)=0.
@ the solution is A* = 1.14455... and the efficiency takes the form

L . (1 =r)A*In <1+e‘>‘*)
=) = S e ) (L L (o )

@ n*(r) is the counterpart of the concept of efficiency at maximal power Nmax from heat
engines;

@ in endoreversible thermodynamics Curzon-Ahlborn (1975) (CA) established the bound

nmax(r) <1l- \/;

@ the CA bound is satisfied in our case - one can show that n*(r) <1 —+/r;

@ hot topic in the literature: possibility to enhance n* above the CA bound in the quantum
context - couple the electric charge to ambient electromagnetic fields.
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Efficiency n* in the in the LB state - bosons: at maximal energy conversion one gets J

(1— AL In (176%)
ApIn (l—e_AZ) —(1+r)Liz (—i—e_)‘Z) .

My (r) =

where . .
A —(1—eM)In(l—e ™) =0 = A} =0.69314...;

@ the bosonic junctions are less efficient then the fermionic ones;
10
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N.B.

@ up to now we have used only one-point current correlators;

@ the transport is fully characterised by the full sequence of n-point correlators;
@ e.g. the quantum noise is deduced from the two-point correlators.

The main aspects of the complete picture:
@ the complete picture is codified in

{(j(tth, ’) o 'j(tn,Xn, i))%o::n
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We concentrate on the fermion transport and investigate the full sequence of n-point correlators:
Cr(Bry s Enm1, X1, w0y Xn) = (i1, X1, 1) -+ (0, Xy 1)) G50 -

{katk_thrl : k:l,...,n—l}

@ for eliminating the unessential for the transport space-time variables, we consider

. oo oo . ~ N PN N
Cp(x1, ..o, Xn3 1) =/ dt1~~/ df,_qeV Bt b))l (B R X, e, Xn) s
— 00 — 00
and perform the zero-frequency limit

C,= lim C/(xt,....;xn; V).
v—07t

@ (! are x;-independent and have the following integral representation in the energy w:

i * dw
ci= [ e,
0 s

Ci(w) = Tr [T"D] . Cw= Y m [’]1‘ DCh g, Ch o T"(]I—D)] . n>2,
o€EPn_1
where the sum runs over all permutations P,_1 of n — 1 elements and
i _ —~T'D s 0 < Oit1,
it T/ (I - D), oi > i1 -
T - 5/1 mi SII(V ) ml(\/ ) D= diag[dl(w)7d2(w)7"'7d'7(w)]
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Example: cumulants in the lead L; of the two-terminal case: J

Cilw) =
Co(w)
C3(w)
Ca(w)
Cs(w) =

7(w) = [S12(V2mw)[?,

TCr,

(e — 7c?),

72c1(1 — 3¢ + 27¢2),

72[er — 363 4+ 127¢cr — 272 (2 + 37¢2)],

3c1[1 + 3063 — 156(1 + 47¢2) + 47c2(5 + 672)],

Cl(w) = dl(w) — d2(w), Cz(w) = dl(w) + dg(w) — 2d1(w)d2(w) .

Understand the mathematical structure and physical meaning of C/, J

Basic observations: {C}

: n=1,2,...} are the cumulants of a probability distribution ¢1;

1 captures the complete information about the particle transport;

Main problem: determine ;.

Strategy: determine the moments and solve the moment problem.
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Skipping the details, the probability distribution in lead L; is: J

@1(w; €) = p12(w)d(€ + ev'T) + p11(w)3(€) + pa1(w)d(€ — ev/'T),
p12 = %(C2_Cl\/F)7 puu=(1-c), pa1 = %(Cz-i—qﬁ)

0<p; <1, p12 + p11+ p21 = 1.

Physical interpretation: the fundamental elementary processes in L1 and the probabilities pj;.

(i@ =(%)

Emission of a particle with energy w:

from R; and absorption by R - probability pi2;

from R; and reabsorption by R; - probability pi1;

from R, and absorption by R; - probability po1;

the §-functions implement the charge variation in L; during these processes;

ey/T - effective charge crossing the defect (full transmission 7 = 1 - absence of the defect).
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Reconstruction of the cumulants C}; from the distribution ¢1: J

The triplet of probabilities {p12, p21, 7} fully describes the quantum transport -
namely all connected current correlators in the zero frequency limit. In fact:

(P2, P21 7} — r(wi €) = mb(w) = /°° A€ €1 (wi €) —+ Ch(w) > CL = /°° Cl(w)

Example: Practical use of the cumulants - the noise C% as a function of the current C%:
(noise experiments with quantum Hall edges)

@ both C! and C} depend on p4 = (p1 & p2)/2;

@ 1+ # 0 parametrises the deviation from the linear regime;

@ eliminate p— in C3 in favour of C} and plot for different values of ji;

@ iy > 0 (left - noise enhancement), py < 0 (right - noise reduction), j1 = 0 (red line).

0.08 0.08
0.06 0.06
S 004 S 004
0.02 0.02
00002005 0.00  0.05  0.10 0000005 0.00 005 0.10
cl cl

M. Mintchev (INFN - Pisa) Quantum Transport and “Heat Engines” Pisa, January 21, 2016 24 / 26



Conclusions, further developments and observations: J

the above results are exact - no use of linear response theory (valid only for 81 ~ 32 and
B~ p2 )i

a direct extension to multi terminal junctions exists;

the efficiency 77 of converting chemical energy to heat can be treated along the same lines;
we used the LB state 23, generated by the Gibbs states of the heat reservoirs;

the orbit {Qg ., T Qg ., PQg,,. PT Qa,,} under parity P and time reversal T provides

new physically interesting non equilibrium states, e.g.
« _21—r) B . il d . C )
T 13 (Brownian particles undergoing a Carnot cycle)

in systems with larger internal symmetry one can use the LB state generated by a
generalized Gibbs ensembles;

test different dynamics and include some S(™ with m > 2 (e.g. Tomonaga-Luttinger
liquid - P. Sorba, M. M. 2013).

Non-equilibrium QFT is a fascinating subject with many open conceptual problems and concrete
physical applications in various fields like:

modern condensed matter,
critical phenomena,
cosmology, ...

M. Mintchev (INFN - Pisa) Quantum Transport and “Heat Engines” Pisa, January 21, 2016 25 /26



Thanks for your attention.
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