Misure NA lenti e simulazione laser

Stefano Lacaprara, Alessandro Gaz

INFN Padova and Università di Padova

TOP Italian Meeting, Torino, 1 October 2015

Intro

- Results on NA measurement of GRIN lens
 - most of the measurements done by Alessandro;
 - all lens measured;
- Preliminary study of time distribution for calibration system using Bellell simulation
 - Idea is to try to compare results from module 1 test at Fuji-hall with what is expected from simulation;
 - do we understand what we see?
 - is the simulation proper?
 - how can we extract calibration constant from measurements?

- NA clearly not uniform
- Most of the bad lens are from last batch
- Three separate populations are visible

- NA clearly not uniform
- Most of the bad lens are from last batch
- Three separate populations are visible

Padova 01/10/2015 5 / 25

Each PMT is illuminated by two laser sources

Each PMT is illuminated by two laser sources

What if NA is lower than expected?

NA=0.55, NA=0.47

Ratio light (NA=0.47/NA=0.55) \in [+10%, -15%]

S.Lacaprara, A.Gaz (Padova)

Laser Profile on PMTs

a bit worse in the lower PMT: down to -40%

CRT timing resolution analysis

- Circulated by Matsuoka-san in iTOP CRT list on 24/9/2015 link
- using run 00298-00318
- three peaks structure seen for time distribution
- Different for different channels
- attributed to different photon path: direct, 1 reflection, 2 reflections
- Time resolution seen \sim 80 ps
- Can we see that on simulation?
- Test both data and simulation.

run00298-00318

TDC distribution

- Simulate only two laser sources;
- Select 3 different emitting angles, with narrow width (2°)
 - relative light yield included
- illuminating the same PMT in 2 channels;
 - direct PMT illumination
 - one reflection
 - two reflection
- look at MC γ time-of-decay;
- look at TDC (1 TDC = 25 ps);
- ADC not simulated in MC!;
- Use two lasers:

40 ps used in CRT 25 ps used in BelleII

SimHit γ time-of-decay: central PMT, $\sigma_t = 40 \ ps$ in Figure 40 ps in Fig

 $\Delta t(0-1) = 111/115 \text{ ps}; \Delta t(0-2) = 296/285 \text{ ps}; \Delta t(1-2) = 186/171 \text{ ps}$ $\sigma_t(0) = 41/36 \text{ ps}; \sigma_t(1) = 42/40 \text{ ps}; \sigma_t(2) = 42/42 \text{ ps}$ TDC γ : central PMT. Laser $\sigma_t = 40 \ ps$ Two different PMT channels

 $\Delta t(0-1) = 118/117 \text{ ps}; \Delta t(0-2) = 299/296 \text{ ps}; \Delta t(1-2) = 181/179 \text{ ps}$ $\sigma_t(0) = 98/69.9 \text{ ps}; \sigma_t(1) = 86/85.1 \text{ ps}; \sigma_t(2) = 99/77.5 \text{ ps}$

SimHit γ time-of-decay: central PMT, $\sigma_t = 27 \ ps$ in Figure 1 PMT channels

 $\Delta t(0-1) = 111/115 \text{ ps}; \Delta t(0-2) = 296/285 \text{ ps}; \Delta t(1-2) = 186/171 \text{ ps}$ $\sigma_t(0) = 41/36 \text{ ps}; \sigma_t(1) = 42/40 \text{ ps}; \sigma_t(2) = 42/42 \text{ ps}$ TDC γ : central PMT. Laser $\sigma_t = 27 \ ps$ Two different PMT channels

 $\Delta t(0-1) = 102/126 \text{ ps}; \Delta t(0-2) = 283/311 \text{ ps}; \Delta t(1-2) = 180/185 \text{ ps}$ $\sigma_t(0) = 86/70 \text{ ps}; \sigma_t(1) = 70/85 \text{ ps}; \sigma_t(2) = 81/84 \text{ ps}$

run00298-00318

TDC distribution

- Same as before, but selecting a PMT on the border of Expansion Box;
- Select 3 different emitting angles, with narrow width (2°)
- illuminating the same PMT in 2 channels;
 - direct PMT illumination
 - one reflection
 - two reflection
- NB: relative light yield not simulated (yet)

SimHit γ time-of-decay: Border PMT, $\sigma_t = 40 \ ps$ in Figure 1 (19) Two different PMT channels

 $\Delta t(0-1) = 19.7/19.6 \text{ ps } \Delta t(0-2) = 281/296 \text{ ps } \Delta t(1-2) = 261/276 \text{ ps}$ $\sigma_t(0) = 38/42 \text{ ps } \sigma_t(1) = 39/43 \text{ ps } \sigma_t(2) = 44/41 \text{ ps}$

TDC γ time-of-decay: Border PMT, $\sigma_t = 40 \ ps$ Two different PMT channels

 $\Delta t(0-1) = 5.58/47$. ps; $\Delta t(0-2) = 274/301$ ps; $\Delta t(1-2) = 269/253$ ps $\sigma_t(0) = 100/94$ ps ps; $\sigma_t(1) = 87/91$ ps ps; $\sigma_t(2) = 140/100$ ps

SimHit γ time-of-decay: Border PMT, $\sigma_t = 27 \ ps$ in Figure 1 we different PMT channels

 $\Delta t(0-1) = 17.3/19.7 \text{ ps}; \Delta t(0-2) = 286/280 \text{ ps}; \Delta t(1-2) = 268/260 \text{ ps}$ $\sigma_t(0) = 28/27 \text{ ps}; \sigma_t(1) = 28/27 \text{ ps}; \sigma_t(2) = 35/22 \text{ ps}$

TDC γ time-of-decay: Border PMT, $\sigma_t = 27 \ ps$ Two different PMT channels

 $\Delta t(0-1) = 17.7/14.7 \text{ ps } \Delta t(0-2) = 284/290 \text{ ps } \Delta t(1-2) = 266/275 \text{ ps}$ $\sigma_t(0) = 85/84 \text{ ps } \sigma_t(1) = 88/89 \text{ ps } \sigma_t(2) = 63/140 \text{ ps}$

Central PMT			Border PMT		
(ps)	$\sigma_t^L = 40$	$\sigma_t^L = 27$	(ps)	$\sigma_t^L = 40$	$\sigma_t^L = 27$
Δt_{0-1}	118	114	Δt_{0-1}	22	16
Δt_{0-2}	297	295	Δt_{0-2}	287	288
Δt_{1-2}	180	182	Δt_{1-2}	260	270
$\sigma_t(0)$	85	78	$\sigma_t(0)$	97	85
$\sigma_t(1)$	85	78	$\sigma_t(1)$	88	88
$\sigma_t(2)$	88	82	$\sigma_t(2)$	120	100

Electronic timing resolution

In simulation: $\sqrt{\sigma_t^2 - \sigma_t^{L^2}}$: $\sigma_t^L = 40 \ ps$: ~75 ps ; $\sigma_t^L = 27 \ ps$: ~73 ps From Matsuoka-san numbers it seems a bit better: $\sigma_t \sim 73 \ ps$, ~ 60 ps Is this reasonable?

Lens NA

- All lens measured
- $\sim 13\%$ bad NA
- $\langle NA \rangle = 0.51$
- but in three subpopulation with
 - $NA \sim 0.48$
 - ► *NA* ~ 0.56
 - ► *NA* ~ 0.48

Time distribution simulation

- Simulation reproduce reasonable well results shown in CRT analysis;
 - Direct, 1-reflection, 2-reflections photons produce signals separated in time for some of the channels;
 - fit signal with 3-gaussian model taking into account different contribution could separate the three signals, recovering optimal time resolution;
 - As the separation of the three signal depends on light-path, possible to estimate a priori Δt to reduce free parameters in the fit;
- Selection based on ADC signal (done in CRT) not possible since not simulated
- Is the simulated electronic σ_t correct?