General Relativity and Beyond

L. Pilo¹

¹ Department of Physical and Chemical Sciences University of L'Aquila

General Relativity

• GR: spacetime is dynamical Minkowski metric Diag(-1,1,1,1) is replaced by $g_{\mu\nu}$

$$extit{ds}_{\mathsf{Flat}}^2 = \eta_{\mu
u} \, extit{d} x^\mu extit{d} x^
u \Rightarrow extit{ds}_{\mathsf{GR}}^2 = g_{\mu
u} \, extit{d} x^\mu extit{d} x^
u$$

Einstein Equations: equations of motion for the metric field

$$egin{align} R_{\mu
u} - rac{1}{2} R\, g_{\mu
u} &= 8\pi G\, \mathsf{T}_{\mu
u} \ \ &= \left[L^{-2}
ight] = \partial \left(g^{-1} \partial g
ight) + \left(g^{-1} \partial g
ight) \left(g^{-1} \partial g
ight) \, \left(g^{-1} \partial g
ight)$$

"Matters (EMT) tells spacetime (metric) how to curve" (Wheeler)

Once the matter content is provided,
 a solution of Einstein equations gives the metric

General Relativity

• GR: spacetime is dynamical Minkowski metric Diag(-1,1,1,1) is replaced by $g_{\mu\nu}$

$$extit{ds}_{\mathsf{Flat}}^2 = \eta_{\mu
u} \, extit{d} x^\mu extit{d} x^
u \Rightarrow extit{ds}_{\mathsf{GR}}^2 = g_{\mu
u} \, extit{d} x^\mu extit{d} x^
u$$

Einstein Equations: equations of motion for the metric field

$$R_{\mu\nu}-rac{1}{2}R\,g_{\mu\nu}=8\pi G\,T_{\mu
u}$$

Curvature =
$$\left[L^{-2}\right] = \partial \left(g^{-1}\partial g\right) + \left(g^{-1}\partial g\right) \left(g^{-1}\partial g\right)$$

"Matters (EMT) tells spacetime (metric) how to curve" (Wheeler)

Once the matter content is provided,
 a solution of Einstein equations gives the metric

General Relativity

• GR: spacetime is dynamical Minkowski metric Diag(-1,1,1,1) is replaced by $g_{\mu\nu}$

$$extit{ds}_{\mathsf{Flat}}^2 = \eta_{\mu
u} \, extit{d} x^\mu extit{d} x^
u \Rightarrow extit{ds}_{\mathsf{GR}}^2 = g_{\mu
u} \, extit{d} x^\mu extit{d} x^
u$$

Einstein Equations: equations of motion for the metric field

$$R_{\mu\nu} - rac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Curvature =
$$\left[L^{-2}\right] = \partial \left(g^{-1}\partial g\right) + \left(g^{-1}\partial g\right) \left(g^{-1}\partial g\right)$$

"Matters (EMT) tells spacetime (metric) how to curve" (Wheeler)

Once the matter content is provided,
 a solution of Einstein equations gives the metric

A single free parameter: $G \sim 1/M_{\rm pl}^2$

- Matter coupling Weak Equivalence principle (10⁻¹³)
- Post Newtonian solar system tests (weak field) $(10^{-3} 10^{-5})$
- Indirect GWs emission test: binary pulsar (10⁻³)
- Newton's Law tested at small distance down to 10⁻²mm
- GR as an EFT: quantum corrections suppressed as

$$E/\Lambda$$
, $\Lambda \sim (10^{-33} \, \text{cm})^{-1} \sim M_{pl} \sim 10^{19} \, \text{GeV}$

irrelevant at any accesible energy scales

A single free parameter: $G \sim 1/M_{\rm pl}^2$

- Matter coupling Weak Equivalence principle (10^{-13})
- Post Newtonian solar system tests (weak field) $(10^{-3} 10^{-5})$
- Indirect GWs emission test: binary pulsar (10⁻³)
- Newton's Law tested at small distance down to 10⁻²mm
- GR as an EFT: quantum corrections suppressed as

$$E/\Lambda$$
, $\Lambda \sim (10^{-33} \, \text{cm})^{-1} \sim M_{pl} \sim 10^{19} \, \text{GeV}$

irrelevant at any accesible energy scales

A single free parameter: $G \sim 1/M_{\rm pl}^2$

- Matter coupling Weak Equivalence principle (10⁻¹³)
- ullet Post Newtonian solar system tests (weak field) (10⁻³ 10⁻⁵)
- Indirect GWs emission test: binary pulsar (10⁻³)
- Newton's Law tested at small distance down to 10⁻²mm
- GR as an EFT: quantum corrections suppressed as

$$E/\Lambda$$
, $\Lambda \sim (10^{-33} \text{ cm})^{-1} \sim M_{pl} \sim 10^{19} \text{ GeV}$

A single free parameter: $G \sim 1/M_{\rm pl}^2$

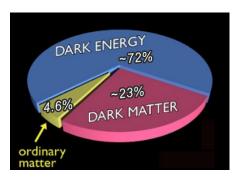
- Matter coupling Weak Equivalence principle (10⁻¹³)
- Post Newtonian solar system tests (weak field) $(10^{-3} 10^{-5})$
- Indirect GWs emission test: binary pulsar (10⁻³)
- Newton's Law tested at small distance down to 10⁻²mm
- GR as an EFT: quantum corrections suppressed as

$$E/\Lambda$$
, $\Lambda \sim (10^{-33} \text{ cm})^{-1} \sim M_{pl} \sim 10^{19} \text{ GeV}$

40.40.41.41.1.000

A single free parameter: $G \sim 1/M_{\rm pl}^2$

- Matter coupling Weak Equivalence principle (10⁻¹³)
- Post Newtonian solar system tests (weak field) $(10^{-3} 10^{-5})$
- Indirect GWs emission test: binary pulsar (10⁻³)
- Newton's Law tested at small distance down to 10⁻²mm
- GR as an EFT: quantum corrections suppressed as


$$E/\Lambda$$
, $\Lambda \sim (10^{-33} \text{ cm})^{-1} \sim M_{pl} \sim 10^{19} \text{ GeV}$
irrelevant at any accesible energy scales

A single free parameter: $G \sim 1/M_{\rm pl}^2$

- Matter coupling Weak Equivalence principle (10^{-13})
- Post Newtonian solar system tests (weak field) $(10^{-3} 10^{-5})$
- Indirect GWs emission test: binary pulsar (10⁻³)
- Newton's Law tested at small distance down to 10⁻²mm
- GR as an EFT: quantum corrections suppressed as

$$E/\Lambda$$
, $\Lambda \sim \left(10^{-33}\,\mathrm{cm}\right)^{-1} \sim M_{pl} \sim 10^{19}\,\mathrm{GeV}$ irrelevant at any accesible energy scales

A snapshot of Universe's matter content

The Universe is dominated by an unknown component:

Dark Energy

$$p = w \rho$$
 with $w \sim -1$

The negative dark energy's pressure is the driving the present acceleration of the Universe

Simplest explanation: dark energy is just a cosmological constant

$$S_{\Lambda} = -\int d^4 x \, \sqrt{g} \, \Lambda \,, \qquad T_{\mu
u} = - \Lambda \, g_{\mu
u} \,, \quad {m p} = - \Lambda \,, \quad {m
ho} = \Lambda$$

Simplest explanation: dark energy is just a cosmological constant

$$S_{\Lambda} = -\int d^4x \, \sqrt{g} \, \Lambda \,, \qquad T_{\mu
u} = -\Lambda \, g_{\mu
u} \,, \quad {m p} = -\Lambda \,, \quad {m
ho} = \Lambda$$

The Λ-term was introduced by Einstein to get a static Universe

Simplest explanation: dark energy is just a cosmological constant

$$S_{\Lambda} = -\int d^4x \, \sqrt{g} \, \Lambda \,, \qquad T_{\mu
u} = -\Lambda \, g_{\mu
u} \,, \quad {m p} = -\Lambda \,, \quad {m
ho} = \Lambda$$

The Λ -term was introduced by Einstein to get a static Universe After Hubble discovered the Universe is expanding Einstein rejected Λ , "the biggest blunder of my life"

Simplest explanation: dark energy is just a cosmological constant

$$S_{\Lambda} = -\int d^4x \, \sqrt{g} \, \Lambda \,, \qquad T_{\mu
u} = -\Lambda \, g_{\mu
u} \,, \quad {m p} = -\Lambda \,, \quad {m
ho} = \Lambda$$

The Λ -term was introduced by Einstein to get a static Universe After Hubble discovered the Universe is expanding Einstein rejected Λ , "the biggest blunder of my life" What if dark energy is not the manifestation of Λ ?

Simplest explanation: dark energy is just a cosmological constant

$$S_{\Lambda} = -\int d^4x \, \sqrt{g} \, \Lambda \,, \qquad T_{\mu
u} = -\Lambda \, g_{\mu
u} \,, \quad {m p} = -\Lambda \,, \quad {m
ho} = \Lambda$$

The Λ-term was introduced by Einstein to get a static Universe After Hubble discovered the Universe is expanding

Einstein rejected Λ, "the biggest blunder of my life"

What if dark energy is not the manifestation of Λ ? and General relativity has to be modified

Simplest explanation: dark energy is just a cosmological constant

$$S_{\Lambda} = -\int d^4x \, \sqrt{g} \, \Lambda \,, \qquad T_{\mu
u} = -\Lambda \, g_{\mu
u} \,, \quad {m p} = -\Lambda \,, \quad {m
ho} = \Lambda$$

The Λ-term was introduced by Einstein to get a static Universe

After Hubble discovered the Universe is expanding

Einstein rejected Λ, "the biggest blunder of my life"

What if dark energy is not the manifestation of Λ ? and General relativity has to be modified On a more theoretical side:

How is it possible to modify GR?

Modify what and at what scale?

$$\int d^4x \sqrt{g} \left[M_{pl}^2 R(g) + \mathcal{L}_{matter}(g, \phi) \right]$$
Where ?

Dark energy scale $H_0^{-1} \approx 4.2$ Gpc or $H_0 \approx 10^{-33}$ eV

Modification in the infrared: large distance and low energy

What?

- Modify the way matter couple to gravity is modified though: equivalence principle is well established
- New "gravitational" fields that couple with $g_{\mu\nu}$ are introduced Scalars, vectors, tensors ...
- ullet $g_{\mu
 u}$ is still the only "gravitational" field but R(g) is modified
- ullet Add non derivative terms for $g_{\mu
 u}$

Example: Massive Gravity

Field theory side

• In gauge theories we can give mass m to gauge bosons (W^{\pm} , Z) effectively controlling the interaction range:

unbroken phase
$$\frac{1}{r}$$
unbroken phase $\frac{e^{-mr}}{r}$

Is GR gauge theory alike and a massive gravity phase exists?

Large distance modification of GR

- In a massive gauge theory $\Lambda=m\,g^{-1}$ for massive gravity then $\Lambda_2=(m\,M_{pl})^{1/2}\sim 10^{-3}$ eV $<< M_{pl}$
- Is there an Higgs mechanism for gravity ? dynamical spontaneous breaking with $\Lambda >> \Lambda_2$

People involved and Collaborations

- M. Celoria; PhD student at GSSI
- D. Comelli; INFN Ferrara
- S. Matarrese, N. Bartolo; University of Padova and INFN Padova
- F. Nesti; Ruder Bosskovic Institute, University of Zagreb, Croatia
- K. Koyama and M. Crisostomi; Institute of Cosmology and Gravitation, University of Portsmouth, UK