UHE Cosmic Rays and the Auger experiment

Sergio Petrera, GSSI and L'Aquila University

- Ten years of UHE Cosmic Rays
- The Pierre Auger Observatory
- L'Aquila/LNGS Auger group

UHE Cosmic Rays 2005

Is there a spectrum cutoff? Predicted by Greisen and Zatsepin-Kuzmin 1966

AGASA / HiRes

AGASA / HiRes

HIRES Coll. astro-ph/0208301

4

AGASA / HiRes

AGASA data renormalized by 20 % (Energy scale)

UHE Cosmic Rays 2005

Is there a spectrum cutoff? Predicted by Greisen and Zatsepin-Kuzmin 1966

YES: CR interaction with photon background (bottom-up scenario) NO: possible super-heavy relic particles (top-down scenario) Implications on multi-messengers: γ, ν

UHE Cosmic Rays NOW

New experiments built

Exploiting <u>both detection techniques</u> ground array sampling + fluorescence detection

Pierre Auger Observatory, Argentina Start 2004, fully operational 2008

Telescope Array, Utah, U.S. Operational 2008

Hybrid Observation of EAS

Concept pioneered by the Pierre Auger Collaboration (Fully operational since 06/2008 Now also used by Telescope Array (TA)

at night-sky (calorimetric)

light trace

Fluorescence light

Particle-density and -composition at ground

Also: Detection of Radio- & Microwave-Signals

S. Petrera GSSI Fair 2015

Pierre Auger Observatory

S. Petrera GSSI Fair 2015

Auger and TA

Auger scientific results

- All-particle flux: <u>suppression</u> above 10^{19.5} eV <u>well established</u>
- Photon and neutrino limits: <u>top-down scenarios ruled out</u>
- Depth of shower maximum

Xmax distributions vs energy, detector-unbiased moments, composition analysis in terms of elemental fractions <u>Mass composition gets heavier</u>

Arrival direction distribution

EeV dipole anisotropy, small angle correlation with sources (joint Auger-TA full sky search) <u>UHECR sky surprisingly isotropic</u>

 Air shower and hadronic interaction physics pp cross section, muon discrepancy (more muons than expected)

Possible data interpretations and astrophysical scenarios

Maximum-energy scenario, photo-disintegration scenario, proton-dominance model

Auger scientific results

- All-particle flux: <u>suppression</u> above 10^{19.5} eV <u>well established</u>
- Photon and neutrino limits: <u>top-down scenarios ruled out</u>
- Depth of shower maximum
 - *Xmax distributions vs energy, detector-unbiased moments, composition analysis in terms of elemental fractions <u>Mass composition gets heavier</u>*
- Arrival direction distribution
 - *EeV dipole anisotropy, small angle correlation with sources (joint Auger-TA full sky search)* <u>UHECR sky surprisingly isotropic</u>
- Air shower and hadronic interaction physics *pp cross section, muon discrepancy (more muons than expected)*

Possible data interpretations and astrophysical scenarios

Maximum-energy scenario, photo-disintegration scenario, proton-dominance model

July 7, 2015

Astrophysical scenarios

S. Petrera - Science Case - CTS

L'Aquila / LNGS Auger group

Two main fields of interest:

 Atmospheric monitoring in the site Raman Lidar built in L'Aquila: benchmark of VAOD measurement

 Simulation Code from UHECR propagation (SimProp) developed in collaboration with R. Aloisio Astrophysical interpretation of spectrum and composition data

Two new Auger papers on composition:

"Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: <u>Measurements at Energies above 10^{17.8} eV</u>" PRD 90, 122005 (2014)

"Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: <u>Composition Implications</u>" PRD 90, 122006 (2014)

Figure 13: Energy evolution of the first two central moments of the X_{\max} distribution compared to air-shower simulations for proton and iron primaries [80, 81, 95-98].

Figure 14: Average of the logarithmic mass and its variance estimated from data using different interaction models. The non-physical region of negative variance is indicated as the gray dashed region.

Two new Auger papers on composition:

"Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: <u>Composition Implications</u>" PRD 90, 122006 (2014)

Figure 12: X_{max} distributions for different energy intervals.

Two new Auger papers on composition:

"Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: <u>Measurements at Energies above 10^{17.8} eV</u>" PRD 90, 122005 (2014) <u>5</u>

"Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory: <u>Composition Implications</u>" PRD 90, 122006 (2014)

FIG. 4: Fitted fraction and quality for the scenario of a complex mixture of protons, helium nuclei, nitrogen nuclei, and iron nuclei. The upper panels show the species fractions and the lower panel shows the *p*-values.

Anisotropy

Figure 2.5: Large scale anisotropy search. Left: 99% limits on the dipole anisotropy in the equatorial plane for the collected statistics until end of 2014 (dashed line) and values of the dipole amplitude d_{\perp} . Right: estimated phase angles. The red points of the equatorial phase are from the analysis of the 750 m array. The data shown is an update of the analyses [15, 88], to be published at ICRC 2015.

Figure 2.6: Regions of over-density observed after $\sim 20^{\circ}$ -smearing of the arrival directions of particles with $E > 5.5 \times 10^{19}$ eV. The results from the northern hemisphere are from the TA Collaboration [91].

Muons

Figure 2.8: Left: Mean number of muons R_{μ} relative to that of proton reference showers, and depth of shower maximum at 10¹⁹ eV. The Auger data point [26], where the muon number is derived from inclined showers, is compared with predictions obtained from different interaction models. Right: Muon discrepancy [25] observed in showers of 10¹⁹ eV. Shown are the phenomenological scaling factors R_E and R_{μ} for the primary energy and the hadronic (primarily muonic) component of the shower that would be needed to bring a model calculation into agreement with Auger data, see text.

Muon excess 1.2-1.6 wrt predictions from hadronic interaction models