
Giacinto DONVITO
INFN-Bari

¡ CEPH Highligth

¡ CEPH Features

¡ CEPH Architecture

¡ CEPH Installation

¡ Ceph was initially created by Sage Weil for his
doctoral dissertation

¡ On March 19, 2010, Linus Torvalds merged the
Ceph client into Linux kernel version 2.6.34

¡ In 2012, Weil created Inktank Storage for
professional services and support for Ceph

¡ In April of 2014 Red Hat purchased Inktank
bringing the majority of Ceph development in-
house

¡ Project started in 2007
¡ An object based parallel file-system
¡ Open source project (LGPL licensed)
¡ Written in C++ and C
¡ kernel level
¡ Posix compliant
¡ No SPOF
¡ Both data and metadata could be replicated

dynamically
¡ Configuration is config file based
¡ Flexible striping strategies and object sizes

§ Could be configured “per file”

¡ In CEPH tutto è un oggetto
¡ Non esiste il database per indicare la

disposizione degli oggetti nel cluster
¡ http://ceph.com/papers/weil-crush-sc06.pdf
¡ Esiste una “regola” per scegliere dove

memorizzare i vari oggetti:
§ ogni singolo nodo del cluster può calcolare la

disposizione
§ NOSPOF

¡ Why start with Object
§ more useful than (disk) blocks
▪ names in a single flat namespace
▪ variable size
▪ simple API with rich semantics

§ more scalable than files
▪ no hard-to-distribute hierarchy
▪ update semantics do not span objects
▪ workload is trivially parallel

¡ CRUSH tells us where data should go
§ small “osd map” records cluster state at point in time
§ ceph-osd node status (up/down, weight, IP)
§ CRUSH function specifying desired data distribution

¡ object storage daemons (RADOS)
§ store it there
§ migrate it as the cluster changes

¡ decentralized, distributed approach allows
§ massive scales (10,000s of servers or more)
§ efficient data access
§ the illusion of a single copy with consistent behavior

¡ dynamic cluster
§ nodes are added, removed; nodes reboot, fail, recover
§ recovery is the norm

¡ osd maps are versioned
§ shared via gossip

¡ any map update potentially triggers data
migration
§ ceph-osds monitor peers for failure
§ new nodes register with monitor
§ administrator adjusts weights, mark out old hardware,

etc.

choose(1,row)

choose(3,cabinet)

choose(1,disk)
·········

·········
·········

······

·········
·········

······
·········

······
·········

·········
·········

root

row2

row1 row3 row4

cab24cab21

cab22

cab23

Figure 1: A partial view of a four-level cluster map hierarchy consisting of rows, cabinets, and shelves of disks. Bold
lines illustrate items selected by each select operation in the placement rule and fictitious mapping described by Table 1.

a b c d e f

a c d e f g

a b c d e f

a h c d e f

g h

g i j k l

h

…

g i j k lh

… … … … … …

… … … … … …

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

r’ = r + f r’ = r + frn

Figure 2: Reselection behavior of select(6,disk) when de-
vice r = 2 (b) is rejected, where the boxes contain the
CRUSH output R⃗ of n = 6 devices numbered by rank.
The left shows the “first n” approach in which device
ranks of existing devices (c,d,e, f) may shift. On the
right, each rank has a probabilistically independent se-
quence of potential targets; here fr = 1, and r′ = r+ frn=
8 (device h).

of ∆w
W . At each level of the hierarchy, when a shift in rel-

ative subtree weights alters the distribution, some data ob-
jects must move from from subtrees with decreased weight
to those with increased weight. Because the pseudo-random
placement decision at each node in the hierarchy is statisti-
cally independent, data moving into a subtree is uniformly
redistributed beneath that point, and does not necessarily
get remapped to the leaf item ultimately responsible for the
weight change. Only at subsequent (deeper) levels of the
placement process does (often different) data get shifted to
maintain the correct overall relative distributions. This gen-
eral effect is illustrated in the case of a binary hierarchy in
Figure 3.
The amount of data movement in a hierarchy has a lower

bound of ∆w
W , the fraction of data that would reside on a

newly added device with weight ∆w. Data movement in-
creases with the height h of the hierarchy, with a conservative

1X2

1 1

2

4

1 1

2

1 1

2

1 1

Added item

Affected weights
78

34

X

X

Figure 3: Data movement in a binary hierarchy due to a
node addition and the subsequent weight changes.

asymptotic upper bound of h∆wW . The amount of movement
approaches this upper bound when ∆w is small relative toW ,
because data objects moving into a subtree at each step of
the recursion have a very low probability of being mapped to
an item with a small relative weight.

3.4 Bucket Types

Generally speaking, CRUSH is designed to reconcile two
competing goals: efficiency and scalability of the mapping
algorithm, and minimal data migration to restore a balanced
distribution when the cluster changes due to the addition
or removal of devices. To this end, CRUSH defines four
different kinds of buckets to represent internal (non-leaf)
nodes in the cluster hierarchy: uniform buckets, list buck-
ets, tree buckets, and straw buckets. Each bucket type is
based on a different internal data structure and utilizes a dif-
ferent function c(r,x) for pseudo-randomly choosing nested
items during the replica placement process, representing a
different tradeoff between computation and reorganization
efficiency. Uniform buckets are restricted in that they must
contain items that are all of the same weight (much like
a conventional hash-based distribution function), while the
other bucket types can contain a mix of items with any com-
bination of weights. These differences are summarized in

By default these include root,
datacenter, room, row, pod, pdu, rack,
chassis and host

¡ È in grado di fornire Block/Object/Posix
storage

¡ File system supportati come back-end
§ Non-Production
▪ btrfs
▪ ZFS (On Linux)

§ Production
▪ ext4 (small scale)
▪ xfs (enterprise deployments)

¡ Intelligent server: replicate data, migrate
object, detect node failures
§ this could happen because everyone know where

object belongs
¡ inodes are stored together with the directory

object: you can load complete directory and
inodes with a single I/O (“find” or “du” are
greatly faster)

recursive accounting

● ceph-mds tracks recursive directory stats

● file sizes

● file and directory counts

● modification time

● virtual xattrs present full stats

● efficient

$ ls -alSh | head
total 0
drwxr-xr-x 1 root root 9.7T 2011-02-04 15:51 .
drwxr-xr-x 1 root root 9.7T 2010-12-16 15:06 ..
drwxr-xr-x 1 pomceph pg4194980 9.6T 2011-02-24 08:25 pomceph
drwxr-xr-x 1 mcg_test1 pg2419992 23G 2011-02-02 08:57 mcg_test1
drwx--x--- 1 luko adm 19G 2011-01-21 12:17 luko
drwx--x--- 1 eest adm 14G 2011-02-04 16:29 eest
drwxr-xr-x 1 mcg_test2 pg2419992 3.0G 2011-02-02 09:34 mcg_test2
drwx--x--- 1 fuzyceph adm 1.5G 2011-01-18 10:46 fuzyceph
drwxr-xr-x 1 dallasceph pg275 596M 2011-01-14 10:06 dallasceph

¡ SAN (shared) disk is not needed to achieve HA
¡ Support snapshots
¡ Support quotas (per directory sub-tree)
¡ The RADOS Gateway also exposes the object store

as aRESTful interface which can present as both
native Amazon S3 and OpenStack Swift APIs.

¡ Ceph RBD interfaces with object storage system
that provides the librados interface and the
CephFS file system

¡ stores block device images as objects. Since RBD is
built on top of librados, RBD inherits librados's
capabilities, including read-only snapshots and
revert to snapshot

Ceph block devices are thin-provisioned, resizable
and store data striped over multiple OSDs in a Ceph
cluster

If, OSDs use Btrfs as their local file system, data is written asynchronously
using copy-on-write, so that unsuccessful write operations can be fully rolled
back.

Region: A region represents a logical geographic
area and contains one or more zones. A cluster
with multiple regions must specify a master
region.
Zone: A zone is a logical grouping of one or
more Ceph Object Gateway instance(s). A region
has a master zone that processes client
requests.

Important Only write objects to the master
zone in a region. You may read objects from
secondary zones. Currently, the Gateway does
not prevent you from writing to a secondary
zone, but DON’T DO IT.

• Improved automatic rebalancing logic, which prioritizes degraded over
misplaced objects

• Rebalancing operations can be temporarily disabled so they don’t
impact performance

• Time-scheduled scrubbing, to avoid disruption during peak times
• Sharing of object buckets to avoid hot-spots
• Optimizations for Flash storage devices increases Ceph’s topline speed
• Read ahead caching accelerates virtual machine booting in OpenStack
• Allocation hinting reduces XFS fragmentation to avoid performance

degradation over time
• Caching hinting preserves the cache’s advantages and improves

performance
• S3 Object Expiration
• Swift Storage Policies

• Erasure code:
• Jerasure erasure code plugin
• ISA erasure code plugin
• Locally repairable erasure code plugin
• SHEC erasure code plugin

• Affidabilità più che adeguata (resistenza alle failure di un numero
arbitrario di OSD) ma con una ridotta perdita di spazio disco.

• More intelligent scrubbing policies and improved peering logic to reduce
impact of common operations on overall cluster performance.

• More information about objects will be provided to help administrators
perform repair operations on corrupted data.

• New backend for OSDs to provide performance bene&ts on existing and
modern drives (SSD, K/V).

• Introduction of a highly-available iSCSI interface for the Ceph Block Device,
allowing integration with legacy systems

• Capabilities for managing virtual block devices in multiple regions, maintaining
consistency through automated mirroring of incremental changes

• Access to objects stored in the Ceph Object Gateway via standard Network File
System (NFS) endpoints, providing storage for legacy systems and applications

• Support for deployment of the Ceph Object Gateway across multiple sites in an
active/active con&guration (in addition to the currently-available active/passive
con&guration)

¡ Tradeoff between Cost vs. Reliability (use-case dependent)
¡ Use the Crush configs to map out your failures domains and

performance pools
¡ Failure domains

§ Disk (OSD and OS)
§ SSD journals
§ Node
§ Rack
§ Site (replication at the RADOS level, Block replication, consider latencies)

¡ Storage pools
§ SSD pool for higher performance
§ Capacity pool

¡ Plan for failure domains of the monitor nodes
¡ Consider failure replacement scenarios, lowered redundancies, and

performance impacts

Architectural considerations – Redundancy and
replication considerations

¡ Storage Node:
§ one OSD per HDD, 1 – 2 GB ram, and 1 Gz/core/OSD,
§ SSD’s for journaling and for using the tiering feature in Firefly
§ Erasure coding will increase useable capacity at the expense of

additional compute load
§ SAS JBOD expanders for extra capacity (beware of extra latency

and oversubscribed SAS lanes)
¡ Monitor nodes (MON): odd number for quorum, services can

be hosted on the storage node for smaller deployments, but
will need dedicated nodes larger installations

¡ Dedicated RADOS Gateway nodes for large object store
deployments and for federated gateways for multi-site

¡ Dedicated or Shared network
§ Be sure to involve the networking and security teams early

when design your networking options
§ Network redundancy considerations
§ Dedicated client and OSD networks
§ VLAN’s vs. Dedicated switches
§ 1 Gbs vs 10 Gbs vs 40 Gbs!

¡ Networking design
§ Spine and Leaf
§ Multi-rack
§ Core fabric connectivity
§ WAN connectivity and latency issues for multi-site

deployments

Volumes Ephemeral

Copy-on-Write Snapshots

¡ https://ceph.com/docs/master/architecture/
¡ http://ceph.com/docs/master/start/intro/
¡ http://ceph.com/docs/master/release-notes/
¡ http://cephnotes.ksperis.com/blog/2015/02/0

2/crushmap-example-of-a-hierarchical-
cluster-map

¡ http://ceph.com/papers/weil-crush-sc06.pdf

