ATLAS LNF activity Status Report

Roberto Di Nardo on behalf of the ATLAS LNF group

50° LNF Scientific Committee November 23rd 2015, Frascati

The ATLAS LNF group

- The Group:
 - M. Antonelli, H. Bilokon, S. Cerioni, V. Chiarella, M. Curatolo, B. Esposito, P. Laurelli, G. Maccarrone, A. Martini, A. Sansoni, M. Gatta, C. Gatti, M. Testa, R. Di Nardo, G. Mancini, E. Vilucchi, M. Beretta, P.Albicocco, S. Lauciani, B.Ponzio, G. Pileggi, M. Dreucci
- Presently, the LNF group is deeply involved in five activities :
 - H->ZZ->4I analysis
 - Particle Flow and Missing transverse energy reconstruction
 - ATLAS upgrade
 - Trigger upgrade with fast tracks reconstructions (FTK)
 - Muon spectrometer upgrade with the construction of the New Small Wheels (NSW)
 - Computing Activities
- Several member of the group have responsibility role within ATLAS
 - INFN coordinator for the NSW upgrade project
 - JET/MET Data Quality coordinator

Roberto Di Nardo – INFN Laboratori nazionali di Frascati

LHC and ATLAS at $\sqrt{s}=13$ TeV

1000

- LHC started the $\sqrt{s} = 13$ TeV operation at the beginning of this year
 - 4 fb⁻¹ collected in 2015 that can be used already for the analyses!
 - ATLAS data taking efficiency >~90%

Physics Analysis in Run1: H->ZZ->41

- Very successful RUN1 Higgs Program
- After discovery, a clear transition from the 'discovery mode' to (precision) measurements
 - Great potential of the H->ZZ*->4I to study the properties of the Higgs boson thanks to the fully reconstructed final state
 - Mass, couplings, spin and parity, differential cross section, off-shell production
 - Despite the low BR, signature very clean
 - Two same flavour opposite sign lepton pairs
 - $-S/B\sim2$
- Fundamental contribution of the LNF ATLAS group to the Higgs boson discovery and to the study of its properties with the H->ZZ->4I

Run: 182796 Event: 74566644 2011-05-30 07:54:29 CEST 5

Mass and couplings

- RUN 1 Results:
 - Higgs boson mass measurement: $m_H = 124.51 \pm 0.52$ (stat) ± 0.06 (sys) GeV
 - Input for the ATLAS-CMS combination -> m_H =125.09±0.21(stat)±0.11(syst) GeV
 - Event categorized as ggF-VBF-VH-like
 - 1 VBF-like event observed

- Huge LNF involvement:
 - contact editor for: Phys. Lett. B 726 (2013)120, Phys. Rev. D 90 (2014) 052004, PhysRevD.91.012006

Properties measurement

• CP analysis to probe the coupling structure of the HZZ interaction

- Evidence for the spin-0 nature of the Higgs boson

- Fiducial and differential cross section to probe several properties of the Higgs boson
 - Kinematics, spin and parity, jet activity , production modes
 - Compatible with SM, very powerful measurements for RUN2 and beyond
- Limits on Off-shell Higgs production set as well with RUN1 data
 - Assuming same on-shell and off-shell couplings: Γ_{H} < 23 MeV

Particle flow

 Active contribution of the Frascati group also in the performance studies, both for near future and for the ATLAS upgrades

Particle flow

- PF algorithms try to follow the path of individual particles trough the detector
- Combined information of the sub-detectors
- Removal of charged pile-up
- Improved p_T and angular resolution of jets
- Contact editor for foreseen publication

ATLAS Upgrade: the New Small Wheel and the Fast TracKer

The ATLAS upgrade program

2009		LHC startup, 900 GeV	ь.		
2010 2011 2012		7 + 8 TeV, L=6x10 ³³ /cm ² s, Bunch spacing 50 ns		~25 1/fb	RUN I
2013 2014	LS1	Go to design energy, nominal luminosity	2		
2015 2016 2017		13 - 14 TeV, L~1x10 ³⁴ /cm²s, bunch spacing 25 ns		75 - 100 1/fb	RUN II
2018 2019	LS2	Injector + LHC Phase-1 upgrade to ultimate design luminosity			
2020 2021 2022		14 TeV, L~3x10 ³⁴ /cm²s, bunch spacing 25 ns		~300 1/fb	RUN III
2023 2024	LS3	HL-LHC Phase-2 upgrade: Interaction region, crab cavities?			
2025 2026 2030?		14 TeV, L=5x10 ³⁴ /cm ² s, luminosity levelling		~3000 1/fb	RUN IV
Phase-0 Upgrade:					
 Consolidation + Insertable B-Laver (IBL) in LS1 already in for Run2 					

- Phase-1 Upgrade
 - New Small Wheel, Calorimeter trigger upgrade, FTK
- Phase-2 Upgrade
 - Inner Tracker, Muon spectrometer (?)
 - LNF group already fully involved in two major Phase1 upgrade (NSW and FTK)

• NSW requests:

-3 FTE technicians for 2 years starting from march 2016

-Infrastructures:

- 1 clean room for assembly (available)
- 1 clean room for panels refinement (soon available)
- Cosmic Ray stand for Chamber commissioning
- some FTE(~1.5) after construction for installation

• FTK

- -Final production of the input Mezzanine, tests of IM and AM06 chip to be done by July 2016
- -Need at least 1 FTE to complete mezzanine production and for test of amchip06

NSW and the ATLAS muon spectrometer

- ATLAS muon spectrometer is realized by:
 - RPC(trigger) and MDT (tracking) In the barrel region (|eta|<1)
 - CSC, MDT (tracking) and TGC (trigger) in the endcap
- The innermost endcap muon station (Small wheel) has the highest background rates in the Muon Spectrometer
 - Located actually between endcap calorimeter and endcap toroid
- Challenging region for LHC RunIII ($2 \times L_{design}$) and RunIV ($5-7 \times L_{design}$)

NSW Motivation

 Trigger and Tracking strongly affected when LHC luminosity will be above the design values

Trigger:

- Current µ-trigger in the EndCap rely only on the Large Wheel information
 - In this region L1 trigger is dominated by fake triggers
 - @ 3x10³⁴ pT>20 GeV estimated trigger rate ~60kHz (available bandwidth ~20kHz)

Tracking

- At HL-LHC luminosity, the hit rate in the fwd region
 ~15kHz/cm2
 - expected ~5MHz /MDT/tube for the current MDT
 - >300kHz/tube MDT efficiency drop due to deadtime from bkg hits + resolution decrease due to space charge

⇒ New Small Wheel needs trigger and high rate capable new technology

NSW layout

- → Small-Strip Thin Gap Chambers (sTGC) and MICROMEsh GAseous Structures (Micromegas)
- Wheel like design
 - 8 large and 8 small sectors
 - Each sector divided in two modules
 - 1 module-> 2 micromegas
 quadruplets (main focus: precision
 tracking) sandwiched by 2 sTGC
 quadruplets (main focus: trigger)
- NSW and MM Layout finalized
 - 4 different chamber types
 - Production distributed over several institutes and some components from industry
 - Italy(SM1), Germany(SM2), France(LM1), Russia/ Greece/CERN (LM2)
 - Module0 construction started to fully certify production sites

 Concepts and design by LNF Servizio Progettazione Apparati **Sperimentali**

Micromegas technology

- Ionization of about 100 e /cm in Ar:CO 93:7 by muons
- Electron drift velocity 47 µm/ns
- Collection of the avalanche charges on the resistive strips (anode)
- Capacitive coupling between resistive and copper readout strips
- Pulseheight and timing information from signal shape
- Strip width: 300 µm, Strip pitch: 425 to 450 µm
- Resistivity of strips: ~10 M Ω /cm
- Performances requirements to reach 15% µ momentum resolution @1TeV
- strip position along eta $\sim 30 \mu m rms$
- Position of strip position along z (orthogonal to the detector plane) ~80µm rms

– INFN Laboratori nazionali di Frascati **Soberto Di Nardo**

Micromegas performances

- Performances studied with small prototypes with several Test beam campaigns (also @ LNF)
 - Efficiency 98-99%, consistent with the dead area from pillars supporting the mesh
 - <100µm resolution for perpendicular tracks from charge centroid
 - µTPC mode exploited for incident angle >10°,
 ~100µm resolution
 - Use time information from hit arrival
 - Impact of copper-resistive strip misalignment
 - Different gas mixture composition
 - Magnetic field effect
 - Performances of the RO electronic

Single Plane Spatial Resolution

NSW activities @ LNF: from the first prototypes...

... to the M0 construction

- Planned activities in Frascati within the SM1 production:
 - Drift panels preparation: gas sealing and test, mesh frame and mesh gluing
 - Panels assembly
 - Two panels ready
 - Tests with cosmic rays

Assembly station

Precise dimension measurements of panels and components from Metrology of Accelerator Division

Fast TracKer system

- higher luminosity foreseen in RUN2, expected <µ>~40-50 ->Triggering will be more difficult
 - tracking at trigger level can keep under control rates and keep good efficiency for relevant physics processes
- Helps to resolve complex topologies with b- and tau-jets -> important for Higgs and BSM physics
- Determine the number of vertex and improves the robustness in jet and MET selections in events with pileup

nazionali di Frascati

• FTK is a track trigger

- system of custom electronics (made of ~8000 ASICs and 2000 FPGAs) for global track reconstruction in the pixel and silicon strip detectors after every level-1 trigger (100 kHz).
- Rapid pattern recognition and track fitting for global track reconstruction of all tracks with $p_T > 1$ GeV to be done in roughly 100 µs
- provide the tracks at the beginning of High Level trigger (HLT) event processing.

The FTK data flow

LNF FTK activities: Input Mezzanine

- Leading activity in the Associative Memories and Input Mezzanine production and tests
- Input Mezzanine:
- IM Spartan6 (LNF WASEDA) :FTK Input-Mezzanine based on Xilinx Spartan6 FPGA
- IM Artix7 (LNF):IBL compatible FTK Input Mezzanine (upgrade to Xilinx Artix7 FPGA)
- Receives 4 inputs links from 2 SCT and 2 Pixel or 2 IBL
- Perform the hit clustering by FPGA
- Send the clustered hit data to Data Formatter board (DF) that sort the hits in their FTK η / ϕ towers and delivers them to processing units (PU)
- Spartan6-IM Production

- 80 board produced and successfully tested, firmware fully developed and tested
- Artix7-IM Production

- Preproduction completed and tested, bulk production done and tests ongoing

LNF FTK activities: Associative Memories

- AM06 Chip (LNF INFN Milano LPNHE Paris) 160mm² 65nm ASIC (400M transistors)
 - Track detection:
 - Compare detectors data with patterns stored in memory.
 - The AM identifies the presence of stored patterns in the incoming data
 - Consumption: 2.5 W for 128 k patterns
 - Performing 10¹⁴ parallel comparisons at 16 bits per second
 - Pre production: 3K chip done and in test
 - Bulk 11Kchip tested by July 2016
- AM06 Test Board (LNF) Test Board for AM06 Chip
 - 6 boards produced, fully tested and working

Roberto Di Nardo – INFN Laboratori nazionali di Frascati

Trigger studies using FTK

- High Level Trigger with FTK for the search of the Higgs Boson in the ZH→vvbb channel – (LNF master thesis)
- High Potential of FTK tracks in combination with Particle-Flow MissingET trigger
- Increase of signal efficiency ~8%, up to 20% at low MET
 - keeping HLT rate constant

- Trigger upgrade studies with L1 Track and FTK++ in the context of phase 2 upgrade
- High potential to suppress online pileup using forward tracking + FTK

Studies for Phase II upgrade

E

- One of the main phase 2 upgrade is the ID angular extension
 - 3 scenarios explored: $|\eta| < 2.7$, $|\eta| < 3.2$, $|\eta| < 4.0$
 - High potential for
 - Suppress pile-up forward jets
 - Improve MET resolution
 - Contact editor for the "Large Eta Task Force report)

Computing activities

LNF ATLAS computing

- Original ATLAS computing model
 - Hierarchical structure based on multi-tier distributed architecture
- Model changed thanks to the improved network (WAN) performances
 - Migration to a mesh model , with interconnection between sites
- Data management also improved
 - Popularity concept introduced
- The ATLAS Italian cloud
 - 1 Tier 1 at CNAF
 - 4 ATLAS Tier-2s
 - Frascati, Milano, Napoli ,Roma1

The ATLAS LNF Tier-2

- ATLAS Tier-2 and other collaborations
- CPU: 17 kHEPSPEC
 - 84 computing nodes, 168b CPU, 1596 cores,
 2056 job slots (x4 in 3yr)
- Storage: ~1.38 PBr, ~1 PBn (x4 in 3yr)
 - The head node and 11 disk servers
- Network: 10Gbps WAN connection, 10Gbps LAN (disk servers and rack switches)
- Around 30 servers for various services:
 - Production systems: EMI-3 midlleware, Disk Pool Manager (DPM) as SRM, Torque/Maui batch system, Argus /GLExec Auth/Authz, cvmfs for experiments software
 - Testing activities

Since 2014: New computing Room

Computing activities

• ATLAS Tier-2: simulation, analysis (end-user, physics groups)

- High availability and reliability in the last years:

- Availability = ~ 95% Reliability = ~97% Efficiency > 90 %
- ATLAS VO management
 - Supported also other LHC VOs, Belle2 VO, Km3net and (in the future) CTO
- PRIN_STOA
 - PROOF-based user analysis with PROOF on Demand (PoD) on Grid computing nodes.
 - User analysis transparently accessing distributed input data through FAX and HTTP federations
- Host of DPM test-bed for testing activity inside DPM collaboration
- Recent collaboration with RM2 and
 - RM3 to setup a regional cloud system

Conclusions

- ATLAS detector worked extremely well during RUN1
 - Huge amount of measurement and papers, espoliting the full potential of data collected up to the end of 2012
 - Fully operational and ready for the $\sqrt{\,s}$ =13TeV challenge
 - Activities already ongoing for future (planned and proposed upgrades upgrades

LNF group heavily involved in the ATLAS activities

- Leading role in Higgs analysis and performance studies
- Fully committed to the two major Phase 1 upgrade of the ATLAS detector
 - Central role in the construction of the NSW with micromegas detector
 - Committed in the finalization and testing of the FTK components (AM and IM) developed in the past years @ LNF

